Highly Orientable Liquid Crystalline Polymers for Quadratic Nonlinear Optics

  • C. Noël
  • F. Kajzar

Abstract

During the last decade it was recognized, that some organic materials may exhibit second order nonlinear optical (NLO) properties which are much more pronounced than those of the conventional inorganic materials, provided that the arrangement of the noncentrosymmetric molecular units in the macroscopic structure is noncentrosymmetric1. The molecular, non-centrosymmetric, charge transfer (CT) constituents can be considered as molecular diodes with enhanced polarizability in the CT direction. In consequence the first molecular hyperpolarizability tensor βijk has a component βzzz enhanced along the CT axis (z). Such CT molecules consist of a conjugated π — electron core, terminated by an electron — donating group and an electron — withdrawing group. In such systems, the NLO response of the bulk material, which is important for device applications, is determined by the optical nonlinearities of the constituent molecules through their ensemble addition. In the simplest case of a single crystal the macroscopic second order NLO susceptibility χ(2) ijk in the laboratory reference frame (IJK) is related to the molecular first hyperpolarizability βijk describing the second order NLO properties of a given molecule in the molecular reference frame (ijk). Neglecting intermolecular interactions, χ(2) ijk is determined by the summation over independent molecules. Local field factors must also be included to account for the effect of the dielectric environment on the electric field strength at the molecular site.

Keywords

Second Harmonic Generation Poling Field Polar Order Second Harmonic Generation Signal Mesogenic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. D. Singer, « Molecular Polymeric Materials for Nonlinear Optics », in « Polymers for Lightwave and Integrated Optics: Technology and Applications », L. A. Hornak Ed., Marcel Dekker, New York 1992, pp. 321–342.Google Scholar
  2. 2.
    E. L. Havinga and P. Van Pelt, Ber. Bunsenges. Phys. Chem., 83, 816(1979).CrossRefGoogle Scholar
  3. 3.
    G. R. Meredith, J. G. Van Dusen and D. J. Williams, Macromolecules,. 15, 1385(1982).CrossRefGoogle Scholar
  4. 4.
    P. Pantelis and J. R. Hill, « Guest-Host Polymer Systems for Second Order Optical Nonlinearities », in « Polymers for Lightwave and Integrated Optics: Technology and Applications », L. A. Hornak Ed., Marcel Dekker, New York 1992, pp. 343–363.Google Scholar
  5. 5.
    see e. g.: Organic Thin Films for Waveguiding Nonlinear Optics», F. Kajzar and J. Swalen Eds., Gordon & Breach Publ., Amsterdam 1996.Google Scholar
  6. 6.
    D. Gonin, C. Noël and F. Kajzar, « Liquid Crystalline Polymers », in « Organic Thin Films for Waveguiding Nonlinear Optics: Science and Technology », F. Kajzar and J. Swalen Ed.; Gordon & Breach Sc. Publ., Amsterdam 1996, pp. 221–288.Google Scholar
  7. 7.
    K. D. Singer, M. G. Kuzyk and J. E. Sohn, J. Opt. Soc. Am. B,. 4, 968(1987).CrossRefGoogle Scholar
  8. 8.
    C. P. J. M. Van der Vorst and S. J. Picken, Proc. SPIE,. 866, 99(1987).CrossRefGoogle Scholar
  9. 9.
    C. P. J. M. Van der Vorst and S. J. Picken, J. Opt. Soc. Am. B,. 7, 320(1990).CrossRefGoogle Scholar
  10. 10.
    W. Maier and A. Saupe, Z. Naturforsch., 14a, 882(1959).Google Scholar
  11. 11.
    W. Maier and A. Saupe, Z. Naturforsch., 15a, 287(1960).Google Scholar
  12. 12.
    G. R. Luckhurst, « Molecular Field Theories of Nematics », in « The Molecular Physics of Liquid Crystals », G. R. Luckhurst and G. W. Gray Eds., Academic Press, London 1979, pp. 85–119.Google Scholar
  13. 13.
    H. Finkelmann and G. Rehage, Adv. Polym. Sci., 60-61, 99(1984).CrossRefGoogle Scholar
  14. 14.
    G. R. Möhlmann and C. P. J. M. Van der Vorst, « Side Chain Liquid Crystal Polymers as Optically Nonlinear Media », in « Side Chain Liquid Crystal Polymers », C. B. McArdle Ed., Blackie, Glasgow 1989, pp. 330–356.Google Scholar
  15. 15.
    S. Piercourt, N. Lacoudre, A. Le Borgne, N. Spassky, C. Friedrich and C. Noël, Makromol. Chem.,. 193, 705(1992).CrossRefGoogle Scholar
  16. 16.
    B. Guichard, V. Poirier, C. Noël, D. Reyx, A. Le Borgne, M. Leblanc, M. Large and F. Kajzar, Macromol. Chem. Phys.,. 197, 3631(1996).CrossRefGoogle Scholar
  17. 17.
    B. Guichard, Gangadhara, D. Reyx and C. Noël, « Development of Side Chain Liquid Crystal Polymers for Nonlinear Optical Applications. 1. Molecular Design, Synthesis and Characterization, In Proc. STEPI 4, Polyimides and High Performance Polymers, M. Abadie and B. Sillion Eds., Agenda Communication, Montpellier 1996, pp. 352-359.Google Scholar
  18. 18.
    D. Gonin, B. Guichard, C. Noël and F. Kajzar, « Highly Efficient Liquid Crystal Polymers for Quadratic Nonlinear Optics », in « Polymers and Other Advanced Materials: Emerging Technologies and Business Opportunities », P. N. Prasad Ed., Plenum Press, New York 1995, pp. 465–483.Google Scholar
  19. 19.
    D. Gonin, B. Guichard, C. Noël and F. Kajzar, Macromol. Symp.,. 96, 185(1995).CrossRefGoogle Scholar
  20. 20.
    B. Guichard, C. Noël, D. Reyx and F. Kajzar, Macromol. Chem. Phys.,. 197, 2185(1996).CrossRefGoogle Scholar
  21. 21.
    T. Dantas de Morais, C. Noël and F. Kajzar, Nonlinear Optics,. 15, 315(1996).Google Scholar
  22. 22.
    D. Gonin, B. Guichard, M. Large, T. Dantas de Morais, C. Noël and F. Kajzar, Journal of Nonlinear Optical Physics and Materials,. 5, 735(1996).CrossRefGoogle Scholar
  23. 23.
    D. Gonin, C. Noël and F. Kajzar, Nonl. Optics,. 8, 37(1994).Google Scholar
  24. 24.
    D. Gonin, C. Noël, A. Le Borgne, G. Gadret and F. Kajzar, Makromol. Chem., Rapid Commun.,. 13, 537(1992).CrossRefGoogle Scholar
  25. 25.
    M. Choy and R. L. Byer, Phys. Rev. B,. 4, 1693(1976).CrossRefGoogle Scholar
  26. 26.
    J. Swalen and F. Kajzar, in Ref. 5, pp. 1-44.Google Scholar
  27. 27.
    J. K. Moscicki, in « Liquid Crystal Polymers: from Structures to Applications », A. A. Collyer Ed., Elsevier Applied Science, London 1992, Chapter 4, pp. 143-236.Google Scholar
  28. 28.
    L. Noirez, P. Keller and J. P. Cotton, Liquid Crystals, 18, 129 (1995).CrossRefGoogle Scholar
  29. 29.
    R. Meyrueix and C. Noël, to be published.Google Scholar
  30. 30.
    S. Herminghaus, B. A. Smith and J. D. Swalen, J. Opt. Soc. Am. B,. 8, 2311(1991).CrossRefGoogle Scholar
  31. 31.
    P. Robin, P. Le Barny, D. Broussoux, J. P. Pocholle and V. Lemoine, in « Organic Molecules for Nonlinear Optics and Photonics », J. Messier, F. Kajzar and P. N. Prasad, Eds., Kluwer Academic Publ., Dordrecht 1991, p. 481.CrossRefGoogle Scholar
  32. 32.
    M. A. Firestone, J. Park, N. Minami, M. A. Ratner, T. J. Marks, W. Lin and G. K. Wong, Macromolecules,. 28, 2247(1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • C. Noël
    • 1
  • F. Kajzar
    • 2
  1. 1.ESPCIParis Cedex 05France
  2. 2.CEA-DTA, LETI, DEIN/SPEGif sur Yvette CedexFrance

Personalised recommendations