Skip to main content

Abstract

Second-order nonlinear optical processes are forbidden, in the electric-dipole approximation, in centrosymmetric materials.1 For organic materials, noncentrosymmetry and significant second-order response (first molecular hyperpolarizability) is relatively easy to achieve on the molecular level by connecting donor and acceptor groups by a conjugated π-electron system.2 However, the macroscopic noncentrosymmetry of such materials is usually achieved only by aligning the molecules in an electric field. In polymeric materials, the alignment can be frozen by cooling the material below its glass-transition temperature while the field is applied. Unfortunately, this poling process results in a thermodynamically unstable material whose nonlinearity tends to relax with time.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example, R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).

    Google Scholar 

  2. See for example, P. N. Prasad and D. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

    Google Scholar 

  3. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, Science 268, 1604 (1995).

    Article  CAS  Google Scholar 

  4. J. F. Nicoud and R. J. Twieg, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, edited by D. S. Chemla and J. Zyss (Academic, Orlando, 1987).

    Google Scholar 

  5. G. Wagnière, Linear and Nonlinear Optical Properties of Molecules (VCH, Weinheim, 1993).

    Google Scholar 

  6. J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).

    Article  Google Scholar 

  7. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, Phys. Rev. Lett. 16, 792 (1966).

    Article  CAS  Google Scholar 

  8. A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev, Phys. Rev. Lett. 70, 1085 (1993).

    Article  CAS  Google Scholar 

  9. P. S. Pershan, Phys. Rev. 130, 919 (1963).

    Article  Google Scholar 

  10. E. Adler, Phys. Rev. 134, A728 (1964).

    Article  Google Scholar 

  11. R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev. Lett. 8, 404 (1962).

    Article  CAS  Google Scholar 

  12. D. S. Bethune, R. W. Smith, and Y. R. Shen, Phys. Rev. Lett. 37, 431 (1976).

    Article  CAS  Google Scholar 

  13. B. Koopmans, A.-M. Janner, H. T. Jonkman, G. A. Sawatzky, and F. van der Woude, Phys. Rev. Lett. 71, 3569(1993).

    Article  CAS  Google Scholar 

  14. M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev, Phys. Rev. Lett. 73, 2127 (1993).

    Article  Google Scholar 

  15. Z. Shuai and J. L. Bredas, Adv. Mater. 6, 486 (1994).

    Article  CAS  Google Scholar 

  16. E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, Phys. Rev. Lett. 65, 37 (1990).

    Article  CAS  Google Scholar 

  17. See for example, L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge, Cambridge, 1982).

    Google Scholar 

  18. J. Tomaszewski and M. M. Rumore, Drug. Dev. Ind. Pharm. 20(2), 119 (1994).

    Article  CAS  Google Scholar 

  19. D. L. Andrews and T. Thirunamachandran, J. Chem. Phys. 70, 1027 (1979).

    Article  CAS  Google Scholar 

  20. Y. T. Lam and T. Thirunamachandran, J. Chem. Phys. 77, 3810 (1982).

    Article  CAS  Google Scholar 

  21. G. Wagnière, Chem. Phys. 54, 411 (1981).

    Article  Google Scholar 

  22. G. Wagnière, J. Chem. Phys. 77, 2786 (1982).

    Article  Google Scholar 

  23. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Lee, and J. M. Hicks, J. Phys. Chem. 97, 1383 (1993).

    Article  CAS  Google Scholar 

  24. J. D. Byers, H. L. Lee, T. Petralli-Mallow, and J. M. Hicks, Phys. Rev. B 49, 14643 (1994).

    Article  CAS  Google Scholar 

  25. M. J. Crawford, S. Haslam, J. M. Probert, Y. A. Gruzdkov, and J. G. Frey, Chem. Phys. Lett. 229, 260 (1994).

    Google Scholar 

  26. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, J. Chem. Phys. 101, 8193 (1994).

    Article  CAS  Google Scholar 

  27. M. Kauranen, T. Verbiest, E. W. Meijer, E. E. Havinga, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, Adv. Mater. 7, 641 (1995).

    Article  CAS  Google Scholar 

  28. M. Kauranen, J. J. Maki, and A. Persoons, in Nonlinear Optical Properties of Organic Materials VIII, edited by G. R. Möhlmann, Proc. SPIE 2527, 328 (1995).

    Google Scholar 

  29. J. D. Byers, H. I. Lee, and J. M. Hicks, J. Chem. Phys. 101, 6233 (1994).

    Article  CAS  Google Scholar 

  30. T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, J. Chem. Phys. 103, 8296 (1995).

    Article  CAS  Google Scholar 

  31. M. Kauranen, T. Verbiest, and A. Persoons, submitted to J. Mod. Opt.

    Google Scholar 

  32. J. D. Byers and J. M. Hicks, Chem. Phys. Lett. 231, 216 (1994).

    Article  CAS  Google Scholar 

  33. M. Kauranen, T. Verbiest, and A. Persoons, Nonlinear Optics 8, 243 (1994).

    CAS  Google Scholar 

  34. J. J. Maki, M. Kauranen, and A. Persoons, Phys. Rev. B 51, 1425 (1995).

    Article  CAS  Google Scholar 

  35. M. Kauranen, J. J. Maki, T. Verbiest, S. Van Elshocht, and A. Persoons, Phys. Rev. B 55, R1985 (1997).

    Article  CAS  Google Scholar 

  36. S. Van Elshocht, T. Verbiest, M. Kauranen, and A. Persoons, submitted to Opt. Lett.

    Google Scholar 

  37. T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, Phys. Rev. Lett. 77, 1456 (1996).

    Article  CAS  Google Scholar 

  38. M. Kauranen, T. Verbiest, and A. Persoons, post-deadline paper PD3, Annual Meeting of the Optical Society of America, October 20-24, 1996, Rochester, New York; For a summary, see Optics and Photonics News 8, No. 4, April 1997, p. 50.

    Google Scholar 

  39. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).

    Article  Google Scholar 

  40. P. Guyot-Sionnest and Y. R. Shen, Phys. Rev. B 35, 4420 (1987).

    Article  CAS  Google Scholar 

  41. P. Guyot-Sionnest and Y. R. Shen, Phys. Rev. B 38, 7985 (1988).

    Article  Google Scholar 

  42. J. E. Sipe, V. Mizrahi, and G. I. Stegeman, Phys. Rev. B. 35, 9091 (1987).

    Article  Google Scholar 

  43. J. J. Maki, T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, J. Chem. Phys. 105, 767 (1996).

    Article  CAS  Google Scholar 

  44. J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, Phys. Rev. B 55, 5021 (1997).

    Article  CAS  Google Scholar 

  45. M. M. Bouman, E. E. Havinga, R. A. J. Janssen, and E. W. Meijer, Mol. Cryst. Liq. Cryst. 256, 439 (1994).

    Article  CAS  Google Scholar 

  46. N. A. Cherepkov and V. V. Kuznetsov, J. Chem. Phys. 95, 3046 (1991).

    Article  CAS  Google Scholar 

  47. T. Verbiest, M. Kauranen, and A. Persoons, submitted to J. Opt. Soc. Am. B.

    Google Scholar 

  48. G. Decher, B. Tieke, Ch. Bosshard, and P. Günter, J. Chem. Soc. Chem. Commun. 19, 933 (1988).

    Article  Google Scholar 

  49. W. M. K. P. Wijekoon, S. P. Kama, G. B. Talapatra, and P. N. Prasad, J. Opt. Soc. Am. B 10, 213 (1993).

    Article  CAS  Google Scholar 

  50. T. Verbiest, Y. Van Rompaey, M. Kauranen, and A. Persoons, Chem. Phys. Lett. 257, 285 (1996).

    Article  CAS  Google Scholar 

  51. R. Stolle, M. Loddoch, and G. Marowsky, Nonlinear Optics 8, 79 (1994).

    CAS  Google Scholar 

  52. See for example, A. Yariv, Quantum Electronics (Wiley, New York, 1989).

    Google Scholar 

  53. H. F. Hameka, Chem. Phys. Lett. 7, 157 (1970).

    Article  CAS  Google Scholar 

  54. A. D. Buckingham, C. Graham, R. E. Raab, Chem. Phys. Lett. 8, 622 (1971).

    Article  CAS  Google Scholar 

  55. N. B. Baranova, Yu. V. Bogdanov, and B. Ya. Zel’dovich, Sov. Phys. Usp. 20, 870 (1977).

    Article  Google Scholar 

  56. N. I. Koroteev, JETP 79, 681 (1994).

    Google Scholar 

  57. See for example Eq. (3.6.18) of Ref. 1.

    Google Scholar 

  58. N. Bloembergen, H. Lotem, and R. T. Lynch, Jr., Indian J. Pure Appl. Phys. 16, 151 (1978).

    CAS  Google Scholar 

  59. G. S. Agarwal, Adv. At. Mol. Phys. 29, 113 (1992).

    Article  CAS  Google Scholar 

  60. A. M. Weiner, S. De Silvestri, and E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).

    Article  CAS  Google Scholar 

  61. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge, Cambridge, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kauranen, M., Verbiest, T., Van Elshocht, S., Persoons, A. (1998). Chirality Effects in Second-Order Nonlinear Optics. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics