Skip to main content

Abstract

As computing elements become smaller and smaller, we must devise ways to encode information in smaller spaces.1 At least as far as strictly spatial encoding is concerned, the two most obvious schemes for nanoscale information storage are (a) continued miniaturization of known microscale elements to approach the nanoscale or (b) tailoring existing nanoscale objects (e.g. molecules) so that they can function as information bearing units (IBUs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Ozin, Nanochemistry: Synthesis in diminishing dimensions, Adv. Mater., 4:612 (1992).

    Article  CAS  Google Scholar 

  2. H.J. Jeong, D.A. Markle, G. Owen, F. Pease, A. Grenville and R. von Bünau, The future of optical lithography, Soi State Tech., 37(4):39 (1994).

    CAS  Google Scholar 

  3. M.D. Levenson, Wavefront engineering for photolithography, Physics Today, 46(7):28 (1993).

    Article  Google Scholar 

  4. R.M. Penner, Nanometer-scale synthesis and atomic-scale modification with the scanning tunnelling microscope, Scanning Micros., 7:805 (1993).

    CAS  Google Scholar 

  5. B. Parkinson, Nanoscale surface-modification techniques using the STM, in: Supramolecular Architecture: Synthetic Control in Thin Films and Solids, T. Bein, ed. American Chemical Society, Washington, D. C. (1992).

    Google Scholar 

  6. F. Grey, STM-based nanotechnology: The japanese challenge, Adv. Mater., 5:704 (1993).

    Article  CAS  Google Scholar 

  7. J.A. Dagata, W. Tseng, J. Schneir and R.M. Silver, Nanofabrication and characterization using a scanning tunneling microscope, Nanotechnology, 4:194 (1993).

    Article  CAS  Google Scholar 

  8. R.C. Barrett and C.F. Quate, Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy, J. Appl. Phys., 70:2725 (1991).

    Article  CAS  Google Scholar 

  9. R.C. Barrett and C.F. Quate, Large-scale charge storage by scanning capacitance microscopy, Ultramicros., 42:262 (1992).

    Article  Google Scholar 

  10. J. Schneir, R. Sonnenfeld, O. Marti, P.K. Hansma, J.E. Demuth and R.J. Hamers, Tunneling microscopy, lithography, and surface diffusion on an easily prepared, atomically flat gold surface, J. Appl. Phys., 63:717 (1988).

    Article  CAS  Google Scholar 

  11. D.A. Sommerfeld, R.T. Cambron and T. P. Beebe, Topographic and diffusion measurements of gold and platinum surfaces by STM, J. Phys. Chem., 94:8926 (1990).

    Article  CAS  Google Scholar 

  12. DJ. Trevor and C.E.D. Chidsey, Room temperature surface diffusion mechanisms observed by STM, J. Vac. Sci. Technol. B, 9:964 (1991).

    Article  CAS  Google Scholar 

  13. C.F. Quate, Nanotechnology — switch to atom control, Nature, 352:571 (1991).

    Article  Google Scholar 

  14. J.A. Stroscio and D.M. Eigler, Atomic and molecular manipulation with the STM, Science, 254: 1319(1991).

    Article  CAS  Google Scholar 

  15. D.M. Eigler and E.K. Schweizer, Positioning single atoms with a STM, Nature, 344:524 (1990).

    Article  CAS  Google Scholar 

  16. S. Hosoki, S. Hosaka and T. Hasegawa, Surface modification of MoS2 using an STM, Appl. Surf. Sci, 60:643 (1992).

    Article  Google Scholar 

  17. F.L. Carter, ed. Molecular Electronic Devices., M. Dekker, New York (1982).

    Google Scholar 

  18. A. Aviram, ed. Molecular Electronics, Science and Technology., American Institute of Physics, New York (1992)

    Google Scholar 

  19. A. Kumar, H.A. Biebuyck, N.L. Abbott and G.M. Whitesides, The use of self-assembled monolayers and a selective etch to generate patterned gold features, J. Am. Chem. Soc, 114:9188 (1992).

    Article  CAS  Google Scholar 

  20. A. Kumar and G.M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching, Appl. Phys. Lett., 63:2002 (1993).

    Article  CAS  Google Scholar 

  21. A. Kumar, H.A. Biebuyck and G.M. Whitesides, Patterning self-assembled monolayers: applications in materials science, Langmuir, 10: 1498(1994).

    Article  CAS  Google Scholar 

  22. G.M. Whitesides and C.B. Gorman, Self-assembled monolayers: Models for organic surface chemistry, in: Handbook of Surface Imaging and Visualization, A.T. Hubbard, ed. CRC Press, Boca Raton, Florida (1995).

    Google Scholar 

  23. E.-L. Florin, V.T. Moy and H.E. Gaub, Adhesion forces between individual ligandreceptor pairs, Science, 264:415 (1994).

    Article  CAS  Google Scholar 

  24. C.D. Bain and G.M. Whitesides, Formation of two-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols, J. Am. Chem. Soc, 110:6560 (1988).

    Article  CAS  Google Scholar 

  25. CD. Bain and G.M. Whitesides, Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold, J. Am. Chem. Soc, 110:3665 (1988).

    Article  CAS  Google Scholar 

  26. CD. Bain and G.M. Whitesides, Molecular-level control over surface order in self-assembled monolayer films of thiols on gold, Science, 240:62 (1988).

    Article  CAS  Google Scholar 

  27. CR.K. Marrian, ed. Technology of Proximal Probe Lithography., The Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington (1993)

    Google Scholar 

  28. R.F. Pease, Patterning techniques for sub-100 nm devices, circuits, and systems, in: Nanostructures and Mesoscopic Systems, W.P. Kirk and M.A. Reed, eds, Academic Press, New York (1992).

    Google Scholar 

  29. E. Betzig and R.J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science, 262:1422 (1993).

    Article  CAS  Google Scholar 

  30. R. Berndt, R. Gaisch, J.K. Gimzewski, B. Reihl, R.R. Schlittler, W.D. Schneider and M. Tschudy, Photon emission at molecular resolution induced by a scanning tunnelling microscope, Science, 262:1425 (1993).

    Article  CAS  Google Scholar 

  31. W.E. Moerner, Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule, Science, 265:46 (1994).

    Article  CAS  Google Scholar 

  32. X.S. Xie and R.C. Dunn, Probing single molecule dynamics, Science, 265:361 (1994).

    Article  CAS  Google Scholar 

  33. W.P. Ambrose, P.M. Goodwin, J.C. Martin and R.A. Keller, Alterations of single molecule fluorescence lifetimes in near-field optical microscopy, Science, 265: 364(1994).

    Article  CAS  Google Scholar 

  34. JJ. Hopfield, J.N. Onuchic and D.N. Beratan, A molecular shift register based on electron transfer, Science, 241:817 (1988).

    Article  CAS  Google Scholar 

  35. D.N. Beratan, J.N. Onuchic, J.R. Winkler and H.B. Gray, Electron-tunneling pathways in proteins, Science, 258:1740 (1992).

    Article  CAS  Google Scholar 

  36. D.S. Wuttke, M.J. Bjerrum, J.R. Winkler and H.B. Gray, Electron-tunneling pathways in cytochrome c, Science, 256:1007 (1992).

    Article  CAS  Google Scholar 

  37. S.M. Risser, D.N. Beratan and J.N. Onuchic, Electronic coupling in starburst dendrimers — connectivity, disorder, and finite-size effects in macromolecular Bethe lattices, J. Phys. Chem., 97:4523 (1993).

    Article  CAS  Google Scholar 

  38. S.M. Risser, D.N. Beratan and T.J. Meade, Electron-transfer in DNA — Predictions of exponential-growth and decay of coupling with donor-acceptor distance, J. Am. Chem. Soc, 115:2508 (1993).

    Article  CAS  Google Scholar 

  39. K.-Y. Chen and C.B. Gorman, Synthesis of a series of focally-substituted organothiol dendrons, J. Org. Chem., 61:9229 (1996).

    Article  CAS  Google Scholar 

  40. C.B. Gorman, B.L. Parkhurst, K.-Y. Chen and W.Y. Su, Encapsulated electroactive objects based upon an inorganic cluster surrounded by dendron ligands, J. Am. Chem. Soc., 119:1141 (1997).

    Article  CAS  Google Scholar 

  41. B.A. Averill, J.R. Bale and W.H. Orme-Johnson, Displacment of iron-sulfur cluster from ferredoxins and other iron-sulfur proteins, J. Am. Chem. Soc, 100:3034 (1978).

    Article  CAS  Google Scholar 

  42. B.A. Averill, T. Herskovitz, R.H. Holm and J.A. Ibers, Synthetic analogs of the active sites of iron-sulfur proteins. II. Synthesis and structure of the..., J. Am. Chem. Soc., 95:3523 (1973).

    Article  CAS  Google Scholar 

  43. B.V. DePamphilis, B.A. Averill, T. Herskovitz, L. Que and R.H. Holm, Synthetic analogues of the active sites of iron-sulfur proteins. VII. Spectral and redox characteristics of the tetranuclear clusters..., J. Am. Chem. Soc, 96:4159 (1974).

    Article  CAS  Google Scholar 

  44. L. Que, M.A. Bobrik, J.A. Ibers and R.H. Holm, Synthetic analogs of the active sites of iron-sulfur proteins. VII. Ligand substitution..., J. Am. Chem. Soc, 96:4168 (1974).

    Article  CAS  Google Scholar 

  45. H. Okuno, K. Uoto, T. Tomohiro and M.-T. Youinou, Synthesis of tetranuclear iron-sulphur protein analogues with tetrathiol ligands attached to macrocycles which provide intramolecular hydrophobic domains, J. Chem. Soc. Dalton Trans., 3375 (1990).

    Google Scholar 

  46. T. Takami, E. Delamarche, B. Michel, C. Gerber, H. Wolf and H. Ringsdorf, Recognition of individual tail groups in self-assembled monolayers, Langmuir, 11:3876 (1995).

    Article  CAS  Google Scholar 

  47. E. Delamarche, B. Michel, H. Kang and C. Gerber, Thermal stability of self-assembled monolayers, Langmuir, 10:4103 (1994).

    Article  CAS  Google Scholar 

  48. M. Sprik, E. Delamarche, B. Michel, U. Röthlisberger, M.L. Klein, H. Wolf and H. Ringsdorf, Structure of hydrophilic self-assembled monolayers: A combined scanning tunneling microscopy and computer simulation study, Langmuir, 10: 4116(1994).

    Article  CAS  Google Scholar 

  49. W.B. Caldwell, DJ. Campbell, K. Chen, B.R. Herr, C.A. Mirkin, A. Malik, M.K. Durbin, P. Dutta and K.G. Huang, A highly ordered self-assembled monolayer film of an azobenzenealkanethiol on Au(111): electrochemical properties and structural characterization by synchrotron in-plane X-ray diffraction, atomic force microscopy, and surface-enhanced Raman spectroscopy, J. Am. Chem. Soc, 117:6071 (1995).

    Article  CAS  Google Scholar 

  50. C. Schönenberger, J. Jorritsma, J.A.M. Sondag-Huethorst and L.G.J. Fokkink, Domain structure of self-assembled alkanethiol monolayers on gold, J. Phys. Chem., 99: 3259(1995).

    Article  Google Scholar 

  51. G.E. Poirier, M.J. Tarlov and H.E. Rushmeier, Two-dimensional liquid phase and the p × √ phase of alkanethiol self-assembled monolayers on Au(111), Langmuir, 10:3383 (1994).

    Article  CAS  Google Scholar 

  52. G.E. Poirier and E.D. Pylant, The self-assembly mechanism of alkanethiols on Au(111), Science, 272:1145 (1996).

    Article  CAS  Google Scholar 

  53. C.A. McDermott, M.T. McDermott, J.-B. Green and M.D. Porter, Structural origins of the surface depressions at alkanethiolate monolayers on Au(111): A scanning tunnelling and atomic force microscopic investigation, J. Phys. Chem., 99: 13257(1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gorman, C.B., Parkhurst, B., Chen, KY., Su, W., Hager, M., Touzov, I. (1998). A Model for Single-Molecule Information Storage. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics