A Model for Single-Molecule Information Storage

  • Christopher B. Gorman
  • Brandon Parkhurst
  • Kang-Yi Chen
  • Wendy Su
  • Michael Hager
  • Igor Touzov


As computing elements become smaller and smaller, we must devise ways to encode information in smaller spaces.1 At least as far as strictly spatial encoding is concerned, the two most obvious schemes for nanoscale information storage are (a) continued miniaturization of known microscale elements to approach the nanoscale or (b) tailoring existing nanoscale objects (e.g. molecules) so that they can function as information bearing units (IBUs).


Inorganic Duster Scanning Capacitance Microscopy Thermal Annealing Cycle Organic Thiol Sodium Hydrogen Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.A. Ozin, Nanochemistry: Synthesis in diminishing dimensions, Adv. Mater., 4:612 (1992).CrossRefGoogle Scholar
  2. 2.
    H.J. Jeong, D.A. Markle, G. Owen, F. Pease, A. Grenville and R. von Bünau, The future of optical lithography, Soi State Tech., 37(4):39 (1994).Google Scholar
  3. 3.
    M.D. Levenson, Wavefront engineering for photolithography, Physics Today, 46(7):28 (1993).CrossRefGoogle Scholar
  4. 4.
    R.M. Penner, Nanometer-scale synthesis and atomic-scale modification with the scanning tunnelling microscope, Scanning Micros., 7:805 (1993).Google Scholar
  5. 5.
    B. Parkinson, Nanoscale surface-modification techniques using the STM, in: Supramolecular Architecture: Synthetic Control in Thin Films and Solids, T. Bein, ed. American Chemical Society, Washington, D. C. (1992).Google Scholar
  6. 6.
    F. Grey, STM-based nanotechnology: The japanese challenge, Adv. Mater., 5:704 (1993).CrossRefGoogle Scholar
  7. 7.
    J.A. Dagata, W. Tseng, J. Schneir and R.M. Silver, Nanofabrication and characterization using a scanning tunneling microscope, Nanotechnology, 4:194 (1993).CrossRefGoogle Scholar
  8. 8.
    R.C. Barrett and C.F. Quate, Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy, J. Appl. Phys., 70:2725 (1991).CrossRefGoogle Scholar
  9. 9.
    R.C. Barrett and C.F. Quate, Large-scale charge storage by scanning capacitance microscopy, Ultramicros., 42:262 (1992).CrossRefGoogle Scholar
  10. 10.
    J. Schneir, R. Sonnenfeld, O. Marti, P.K. Hansma, J.E. Demuth and R.J. Hamers, Tunneling microscopy, lithography, and surface diffusion on an easily prepared, atomically flat gold surface, J. Appl. Phys., 63:717 (1988).CrossRefGoogle Scholar
  11. 11.
    D.A. Sommerfeld, R.T. Cambron and T. P. Beebe, Topographic and diffusion measurements of gold and platinum surfaces by STM, J. Phys. Chem., 94:8926 (1990).CrossRefGoogle Scholar
  12. 12.
    DJ. Trevor and C.E.D. Chidsey, Room temperature surface diffusion mechanisms observed by STM, J. Vac. Sci. Technol. B, 9:964 (1991).CrossRefGoogle Scholar
  13. 13.
    C.F. Quate, Nanotechnology — switch to atom control, Nature, 352:571 (1991).CrossRefGoogle Scholar
  14. 14.
    J.A. Stroscio and D.M. Eigler, Atomic and molecular manipulation with the STM, Science, 254: 1319(1991).CrossRefGoogle Scholar
  15. 15.
    D.M. Eigler and E.K. Schweizer, Positioning single atoms with a STM, Nature, 344:524 (1990).CrossRefGoogle Scholar
  16. 16.
    S. Hosoki, S. Hosaka and T. Hasegawa, Surface modification of MoS2 using an STM, Appl. Surf. Sci, 60:643 (1992).CrossRefGoogle Scholar
  17. 17.
    F.L. Carter, ed. Molecular Electronic Devices., M. Dekker, New York (1982).Google Scholar
  18. 18.
    A. Aviram, ed. Molecular Electronics, Science and Technology., American Institute of Physics, New York (1992)Google Scholar
  19. 19.
    A. Kumar, H.A. Biebuyck, N.L. Abbott and G.M. Whitesides, The use of self-assembled monolayers and a selective etch to generate patterned gold features, J. Am. Chem. Soc, 114:9188 (1992).CrossRefGoogle Scholar
  20. 20.
    A. Kumar and G.M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching, Appl. Phys. Lett., 63:2002 (1993).CrossRefGoogle Scholar
  21. 21.
    A. Kumar, H.A. Biebuyck and G.M. Whitesides, Patterning self-assembled monolayers: applications in materials science, Langmuir, 10: 1498(1994).CrossRefGoogle Scholar
  22. 22.
    G.M. Whitesides and C.B. Gorman, Self-assembled monolayers: Models for organic surface chemistry, in: Handbook of Surface Imaging and Visualization, A.T. Hubbard, ed. CRC Press, Boca Raton, Florida (1995).Google Scholar
  23. 23.
    E.-L. Florin, V.T. Moy and H.E. Gaub, Adhesion forces between individual ligandreceptor pairs, Science, 264:415 (1994).CrossRefGoogle Scholar
  24. 24.
    C.D. Bain and G.M. Whitesides, Formation of two-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols, J. Am. Chem. Soc, 110:6560 (1988).CrossRefGoogle Scholar
  25. 25.
    CD. Bain and G.M. Whitesides, Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold, J. Am. Chem. Soc, 110:3665 (1988).CrossRefGoogle Scholar
  26. 26.
    CD. Bain and G.M. Whitesides, Molecular-level control over surface order in self-assembled monolayer films of thiols on gold, Science, 240:62 (1988).CrossRefGoogle Scholar
  27. 27.
    CR.K. Marrian, ed. Technology of Proximal Probe Lithography., The Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington (1993)Google Scholar
  28. 28.
    R.F. Pease, Patterning techniques for sub-100 nm devices, circuits, and systems, in: Nanostructures and Mesoscopic Systems, W.P. Kirk and M.A. Reed, eds, Academic Press, New York (1992).Google Scholar
  29. 29.
    E. Betzig and R.J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science, 262:1422 (1993).CrossRefGoogle Scholar
  30. 30.
    R. Berndt, R. Gaisch, J.K. Gimzewski, B. Reihl, R.R. Schlittler, W.D. Schneider and M. Tschudy, Photon emission at molecular resolution induced by a scanning tunnelling microscope, Science, 262:1425 (1993).CrossRefGoogle Scholar
  31. 31.
    W.E. Moerner, Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule, Science, 265:46 (1994).CrossRefGoogle Scholar
  32. 32.
    X.S. Xie and R.C. Dunn, Probing single molecule dynamics, Science, 265:361 (1994).CrossRefGoogle Scholar
  33. 33.
    W.P. Ambrose, P.M. Goodwin, J.C. Martin and R.A. Keller, Alterations of single molecule fluorescence lifetimes in near-field optical microscopy, Science, 265: 364(1994).CrossRefGoogle Scholar
  34. 34.
    JJ. Hopfield, J.N. Onuchic and D.N. Beratan, A molecular shift register based on electron transfer, Science, 241:817 (1988).CrossRefGoogle Scholar
  35. 35.
    D.N. Beratan, J.N. Onuchic, J.R. Winkler and H.B. Gray, Electron-tunneling pathways in proteins, Science, 258:1740 (1992).CrossRefGoogle Scholar
  36. 36.
    D.S. Wuttke, M.J. Bjerrum, J.R. Winkler and H.B. Gray, Electron-tunneling pathways in cytochrome c, Science, 256:1007 (1992).CrossRefGoogle Scholar
  37. 37.
    S.M. Risser, D.N. Beratan and J.N. Onuchic, Electronic coupling in starburst dendrimers — connectivity, disorder, and finite-size effects in macromolecular Bethe lattices, J. Phys. Chem., 97:4523 (1993).CrossRefGoogle Scholar
  38. 38.
    S.M. Risser, D.N. Beratan and T.J. Meade, Electron-transfer in DNA — Predictions of exponential-growth and decay of coupling with donor-acceptor distance, J. Am. Chem. Soc, 115:2508 (1993).CrossRefGoogle Scholar
  39. 39.
    K.-Y. Chen and C.B. Gorman, Synthesis of a series of focally-substituted organothiol dendrons, J. Org. Chem., 61:9229 (1996).CrossRefGoogle Scholar
  40. 40.
    C.B. Gorman, B.L. Parkhurst, K.-Y. Chen and W.Y. Su, Encapsulated electroactive objects based upon an inorganic cluster surrounded by dendron ligands, J. Am. Chem. Soc., 119:1141 (1997).CrossRefGoogle Scholar
  41. 41.
    B.A. Averill, J.R. Bale and W.H. Orme-Johnson, Displacment of iron-sulfur cluster from ferredoxins and other iron-sulfur proteins, J. Am. Chem. Soc, 100:3034 (1978).CrossRefGoogle Scholar
  42. 42.
    B.A. Averill, T. Herskovitz, R.H. Holm and J.A. Ibers, Synthetic analogs of the active sites of iron-sulfur proteins. II. Synthesis and structure of the..., J. Am. Chem. Soc., 95:3523 (1973).CrossRefGoogle Scholar
  43. 43.
    B.V. DePamphilis, B.A. Averill, T. Herskovitz, L. Que and R.H. Holm, Synthetic analogues of the active sites of iron-sulfur proteins. VII. Spectral and redox characteristics of the tetranuclear clusters..., J. Am. Chem. Soc, 96:4159 (1974).CrossRefGoogle Scholar
  44. 44.
    L. Que, M.A. Bobrik, J.A. Ibers and R.H. Holm, Synthetic analogs of the active sites of iron-sulfur proteins. VII. Ligand substitution..., J. Am. Chem. Soc, 96:4168 (1974).CrossRefGoogle Scholar
  45. 45.
    H. Okuno, K. Uoto, T. Tomohiro and M.-T. Youinou, Synthesis of tetranuclear iron-sulphur protein analogues with tetrathiol ligands attached to macrocycles which provide intramolecular hydrophobic domains, J. Chem. Soc. Dalton Trans., 3375 (1990).Google Scholar
  46. 46.
    T. Takami, E. Delamarche, B. Michel, C. Gerber, H. Wolf and H. Ringsdorf, Recognition of individual tail groups in self-assembled monolayers, Langmuir, 11:3876 (1995).CrossRefGoogle Scholar
  47. 47.
    E. Delamarche, B. Michel, H. Kang and C. Gerber, Thermal stability of self-assembled monolayers, Langmuir, 10:4103 (1994).CrossRefGoogle Scholar
  48. 48.
    M. Sprik, E. Delamarche, B. Michel, U. Röthlisberger, M.L. Klein, H. Wolf and H. Ringsdorf, Structure of hydrophilic self-assembled monolayers: A combined scanning tunneling microscopy and computer simulation study, Langmuir, 10: 4116(1994).CrossRefGoogle Scholar
  49. 49.
    W.B. Caldwell, DJ. Campbell, K. Chen, B.R. Herr, C.A. Mirkin, A. Malik, M.K. Durbin, P. Dutta and K.G. Huang, A highly ordered self-assembled monolayer film of an azobenzenealkanethiol on Au(111): electrochemical properties and structural characterization by synchrotron in-plane X-ray diffraction, atomic force microscopy, and surface-enhanced Raman spectroscopy, J. Am. Chem. Soc, 117:6071 (1995).CrossRefGoogle Scholar
  50. 50.
    C. Schönenberger, J. Jorritsma, J.A.M. Sondag-Huethorst and L.G.J. Fokkink, Domain structure of self-assembled alkanethiol monolayers on gold, J. Phys. Chem., 99: 3259(1995).CrossRefGoogle Scholar
  51. 51.
    G.E. Poirier, M.J. Tarlov and H.E. Rushmeier, Two-dimensional liquid phase and the p × √ phase of alkanethiol self-assembled monolayers on Au(111), Langmuir, 10:3383 (1994).CrossRefGoogle Scholar
  52. 52.
    G.E. Poirier and E.D. Pylant, The self-assembly mechanism of alkanethiols on Au(111), Science, 272:1145 (1996).CrossRefGoogle Scholar
  53. 53.
    C.A. McDermott, M.T. McDermott, J.-B. Green and M.D. Porter, Structural origins of the surface depressions at alkanethiolate monolayers on Au(111): A scanning tunnelling and atomic force microscopic investigation, J. Phys. Chem., 99: 13257(1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Christopher B. Gorman
    • 1
  • Brandon Parkhurst
    • 1
  • Kang-Yi Chen
    • 1
  • Wendy Su
    • 1
  • Michael Hager
    • 1
  • Igor Touzov
    • 1
  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations