Efficient Fullcolour Light-Emitting Devices and Lasers with Polyphenyls

  • G. Leising
  • F. Meghdadi
  • S. Tasch
  • C. Brandstätter
  • W. Graupner
  • S. Hampel
  • J. W. E. List
  • F. Stelzer
  • B. Winkler
  • C. Zenz
  • P. Schlichting
  • U. Rohr
  • Y. Geerts
  • U. Scherf
  • K. Müllen


Soluble and stable polyparaphenylene-type ladder polymers with an extraordinary high degree of intrachain order and exceptionally low concentration of defects in the electronic structure belong to the class of best defined conjugated low-dimensional organic semiconductors currently available. Parahexaphenyl, the highly stable oligomer of polyparaphenylene, can be synthesized in the form of single crystals, disordered thin films and highly ordered epitaxially grown thin films. We present and discuss results on the optical and optoelectronic properties of these polyparaphenylene systems.

We demonstrate the fabrication and characterization of highly efficient red-green-blue (RGB) and white light emitting devices with these electro-active materials. This RGB-devices are fabricated based on a new technique, which allows the realization of fullcolour flat panel displays. The brightness of such RGB emitting devices is higher than 1000 cd/m2 (for the green device), comparable to that of fluorescent tubes. Using this new technique, we are able to produce devices having any desired emission colour in the visible and near infrared spectrum.

A high photoluminescence quantum yield and a good environmental stability of the active oligomer or polymer materials, besides many other device parameters, are very important to achieve competitive operation lifetimes of these new organic electroluminescence devices.

Photoexcitation experiments on polyparaphenylenes reveal their high photoluminescence quantum yield and the perspective for being true candiates as solid-state polymer-laser materials due to their pronounced signature of blue-green stimulated emission. We present blue-green laser action in polyparaphenylene-type ladder polymer.


Excitation Energy Transfer Emission Color White Light Emission Threshold Electric Field Good Environmental Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett 51, 913 (1987).CrossRefGoogle Scholar
  2. [2]
    C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L269 (1988).CrossRefGoogle Scholar
  3. [3]
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. Kraft, A. B. Holmes, Nature 347, 530 (1990). [4] D. Braun, A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991). [5] G. Grem, G. Leditzky, B. Ullrich, G. Leising, Adv. Mater. 4, 36 (1992). [6] M. Berggren, M. Granström, O. Inganäs and M. Andersson, Adv. Mater. 7, 900 (1995). [7] G. Leising, Phys. Bl. 49, 510 (1993).Google Scholar
  4. [8]
    S. R. Forrest, P. E. Burrows, M. E. Thompson, Laser Focus World, February 99 (1995).Google Scholar
  5. [9]
    V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, M. E. Thompson, Nature 380, 29 (1996).CrossRefGoogle Scholar
  6. [10]
    T. Wakimoto, R. Mirayama, H. Nakada, K. Imai, G. Sato and M. Nomura, Polymer Reprints Japan 40, 3600 (1991).Google Scholar
  7. [11]
    Y. Hamada, T. Sano, K. Shibata and K. Kuroki, Jpn. J. Appl. Phys. 34, 824 (1995).CrossRefGoogle Scholar
  8. [12]
    M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg and O. Wennerström, Nature 372, 444 (1994).CrossRefGoogle Scholar
  9. [13]
    G. Yu, H. Nishino, A. J. Heeger, T.-A. Chen, R. D. Rieke, Synth. Met. 72, 249 (1995).CrossRefGoogle Scholar
  10. [14]
    N. C. Greenham, R. H. Friend and D. C. Bradley, Adv. Mater. 6, 491 (1994).CrossRefGoogle Scholar
  11. [15]
    J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub, Adv.Mater.6, 551 (1995).CrossRefGoogle Scholar
  12. [16]
    S. Tasch, A. Niko, G. Leising, U. Scherf, Appl. Phys. Lett. 68, 1090 (1996).CrossRefGoogle Scholar
  13. [17]
    W. Graupner, G. Grem, F. Meghdadi, C. Paar, G. Leising, U. Scherf, K. Müllen, W. Fischer, F. Stelzer, Mol Cryt. Liq. Cryst. 256, 549 (1994).CrossRefGoogle Scholar
  14. [18]
    C. Hosokawa, H. Higashi, T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).CrossRefGoogle Scholar
  15. M. Era, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 67, 2436 (1996).CrossRefGoogle Scholar
  16. [19]
    W. Graupner, M. Mauri, J. Stampfl, O. Unterweger, G. Leising, U. Scherf, K. Müllen, Mol. Cryst. Liq. Cryst., 256, 431 (1994).CrossRefGoogle Scholar
  17. W. Graupner, G. Leditzky, G. Leising, U. Scherf, Phys. Rev. B 54, 7610 (1996).Google Scholar
  18. [20]
    L. Athouel, G. Froyer, M. T. Riou, Synth Met. 57 4734 (1993).CrossRefGoogle Scholar
  19. [21]
    A. Niko, F. Meghdadi, C. Ambrosch-Draxl, P. Vogl, G. Leising, Synth. Met. 76, 177 (1996).CrossRefGoogle Scholar
  20. [22]
    J. Stampfl, S. Tasch, G. Leising and U. Scherf, Synth. Met. 71, 2125 (1995).CrossRefGoogle Scholar
  21. [23]
    W. Fischer, F. Meghdai, F. Stelzer, G. Leising, Synth. Met. 76, 201 (1996).CrossRefGoogle Scholar
  22. [24]
    I. D. Parker, J. Appl. Phys. 75, 1656 (1994).CrossRefGoogle Scholar
  23. [25]
    A. Fujii, M. Yoshida, Y. Ohmori and K. Yoshino, Jpn. Appl. Phys. 34, 499 (1995).CrossRefGoogle Scholar
  24. [26]
    S. Tasch, A. Niko, G. Leising, U. Scherf, Appl. Phys. Lett. 68, 1090 (1996).CrossRefGoogle Scholar
  25. [27]
    H. Tokailin, C. Hosokawa, T. Kusomoto, US-Patent 5,126,214 (1992).Google Scholar
  26. C. W. Tang, D. J. Williams, J. C. Chang, US-Patent 5,294,870 (1994).Google Scholar
  27. M. Matsuura, H. Tokailin, M. Eida, C. Hosokawa, Y. Hironaka and T. Kusumoto, Proc. Asia Diplay 95, 269 (1995).Google Scholar
  28. [28]
    S. Tasch, C. Brandstätter, F. Meghdadi, G. Leising, L. Athouel, G. Froyer, Adv. Mat. 9, 33 (1997).CrossRefGoogle Scholar
  29. [29]
    Colorimetry, 2nd. edition, CIE-Publication, No. 15.2 (CIE, Vienna, 1986).Google Scholar
  30. [30]
    A. Niko, S. Tasch, F. Meghdadi, G. Leising (submitted to J. Appl. Phys.) (1997).Google Scholar
  31. [31]
    J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Appl. Phys. Lett. 64, 615 (1994).CrossRefGoogle Scholar
  32. M. Berggren, G. Gustafsson, and O. Inganäs, M. R. Andersson, T. Hjertberg, and O. Wennerström, J. Appl. Phys. 76 7530 (1994).CrossRefGoogle Scholar
  33. [32]
    J. Kido, M. Kaimura, K. Nagai, Science 267, 1332 (1995).CrossRefGoogle Scholar
  34. [33]
    J. Kido, W. Ikeda, M. Kimura, and K. Nagai, Jpn. J. Appl Phys. 35, L394 (1996).CrossRefGoogle Scholar
  35. [34]
    A. Dodabalapur, L. J. Rothberg, and T. M. Miller, Appl. Phys. Lett. 65, 2308 (1994).CrossRefGoogle Scholar
  36. [35]
    R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett. 68, 1192(1996).CrossRefGoogle Scholar
  37. [36]
    C.C. Wu, J. C. Sturm, and R.A. Register, Appl. Phys. Lett. 69, 3117 (1996).CrossRefGoogle Scholar
  38. [37]
    H. Quante, P. Schlichting, U. Rohr, Y. Geerts, K. Müllen, Macromol. Chem. Phys. (in print) (1997).Google Scholar
  39. [38]
    S. Tasch, C. Hochfilzer, J.W.E. List, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, K. Müllen, Phys. Rev.B (in print) (1997).Google Scholar
  40. [39]
    S. Tasch, J.W. E. List, O. Ekström, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, K. Müllen (submitted to Appl. Phys. Lett.) (1997).Google Scholar
  41. [40]
    M. Granström and O. Inganäs, Appl. Phys. Lett. 68, 147 (1996).CrossRefGoogle Scholar
  42. [41]
    N. Tessler, G. J. Denton, R. H. Friend, Nature 382, 695 (1996).CrossRefGoogle Scholar
  43. [42]
    G. H. Gelinck, J. W. Warman, M. Remmers, D. Neher, Chem. Phys. Lett. 265, 320 (1997).CrossRefGoogle Scholar
  44. [43]
    F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, A. J. Heeger, Science 273, 1822(1996).CrossRefGoogle Scholar
  45. [44]
    S. V. Frolov et al., Phys. Rev. Lett. 78, 729 (1997).CrossRefGoogle Scholar
  46. [45]
    G. Kranzeibinder, H. J. Byrne, S. Hallstein, S. Roth, G. Leising, (Synth. Met. in print) (1997).Google Scholar
  47. [46]
    H. J. Brouwer, V. V. Krasnikov, A. Hilberer, G. Hadziioannou, Adv. Mater. 8, 925 (1996).CrossRefGoogle Scholar
  48. [47]
    F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, A. J. Heeger, Chem. Phys. Lett. 256, 424 (1996).CrossRefGoogle Scholar
  49. [48]
    M. Moser, S. Tasch, and G. Leising, (Synth. Met. in print) (1997).Google Scholar
  50. [49]
    W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. DeSilvestri, U. Scherf, Phys. Rev. Lett. 76, 847 (1996).CrossRefGoogle Scholar
  51. [50]
    D. Shamrakov, R. Reisfeld, Chem. Phys. Lett. 213, 47 (1993).CrossRefGoogle Scholar
  52. [51]
    J. Sturm, S. Tasch, A. Niko, G. Leising, E. Toussaere, J. Zyss T. C. Kowalczyk, K. D. Singer, U. Scherf, J. Huber, (Thin Solid Films in print) (1997).Google Scholar
  53. [52]
    C. Zenz et al., (submitted to J. Appl Phys. (1997).Google Scholar
  54. [53]
    M. Yan et al., Phys. Rev. B 49, 9419 (1994).CrossRefGoogle Scholar
  55. [54]
    L. Cuff, M. Kertesz, U. Scherf, K. Müllen, Synth. Met. 69, 683 (1995).CrossRefGoogle Scholar
  56. [55]
    H. Amano, T. Asahi, I. Akasi, Jpn.Appl. Phys. 29, 205 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • G. Leising
    • 1
  • F. Meghdadi
    • 1
  • S. Tasch
    • 1
  • C. Brandstätter
    • 1
  • W. Graupner
    • 1
  • S. Hampel
    • 1
  • J. W. E. List
    • 1
  • F. Stelzer
    • 1
  • B. Winkler
    • 1
  • C. Zenz
    • 1
  • P. Schlichting
    • 2
  • U. Rohr
    • 2
  • Y. Geerts
    • 2
  • U. Scherf
    • 2
  • K. Müllen
    • 2
  1. 1.Institut für Festkörperphysik, SFB Elektroaktive StoffeTechnische Universität GrazGrazAustria
  2. 2.Max-Planck-Institut für PolymerforschungMainzGermany

Personalised recommendations