Template Polymerization of Dimethylaminoethyl Methacrylate in the Presence of Poly(Acrylamide-Acrylic Acid) Induced by Gamma Radiation and its use for Removal of Metal Ions

  • T. Siyam
  • Z. H. Abd-Elatif


The polymeric material of poly (acrylamide-acrylic acid-dimethylaminoethyl methacrylate) “PAM-AA-DMAEM” was prepared by gamma radiation-induced polymerization of dimethylaminoethyl methacrylate (DMAEM) in the presence of prepared poly(acrylamide-acrylic acid) “PAM-AA” as a template polymer using a template polymerization technique.

The effect of gamma radiation on the polymerization process showed that the conversion increases with increasing the radiation dose. The obtained polymer is water-soluble polymer at low doses <10 KGy. On increasing the radiation dose the polymer was converted into a gel with the swelling degree vary from 15–36. It was found that the capacities of the obtained polymeric gels toward Cu2+ increase with increasing the absorbed dose, monomer concentration and the template polymer/monomer molar ratio.

Spectroscopic studies showed that the mechanism of the floc formation is due to the interaction between the polymer and copper sulphate is a bond formation between the active groups of polymer chains and ions of copper sulphate. The amide and tertiary amino groups form complex with Cu2+ while carboxylic group interacts with ion through ion-exchange mechanism.


Gamma Radiation Monomer Concentration Copper Sulphate Conversion Percent Polyacrylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1-.
    Z.H. Abd-Ellatif, The 1st Arab Intern. Conf. on Polymers Applications p. 67, Fac. of Sci. Univ. of Mansoura, Egypt Sept. (1991).Google Scholar
  2. 2-.
    Z.H. Abd-Ellatif, Polym Intern., 28 301 (1992).CrossRefGoogle Scholar
  3. 3-.
    A. Chapiro and J. Dulieu, Eur. Polym J., 13 536 (1977).Google Scholar
  4. 4-.
    A. Chapiro, Pure Appl. Chem., 643 (1981).Google Scholar
  5. 5-.
    A. Chapiro and R. Gouloubandi, Eur. Polym. J., 10 1159 (1974).CrossRefGoogle Scholar
  6. 6-.
    T. Siyam, Studies on Gamma Radiation-induced copolymerization of Acrylamide-Sodium Acrylate as Flocculant, M. Sc., Fac. of Sci., Cairo Univ. (1982).Google Scholar
  7. 7-.
    T. Siyam, J. Mocromol. Sci. Pure. Appl. Chem A31 (314), 383 (1994).Google Scholar
  8. 8-.
    T. Siyam, M.M. Abdel-Hamed & I.M. El-Naggar, J. Macromol. Sci. Pure. Appl. Chem. A32 (516), 871 (1995).Google Scholar
  9. 9-.
    K. Fujimori, G.T. Trainor, Polym. Bull., 9 204 (1983).CrossRefGoogle Scholar
  10. 10-.
    K. Fujimori, G.T. Trainor and M.J. Costigan, J. Polym. Sci. A-1, 22 2479 (1984).Google Scholar
  11. 11-.
    C.H. Bamford and Z. Shiki, Polym., 595 (1968).Google Scholar
  12. 12-.
    A. Chapiro, Radiation Chemistry of Polymeric System, Intersci. Pub., N. Y. Chap. IV, 121 (1962).Google Scholar
  13. 13-.
    G. Odian, Principles of Polymerization, McGraw-hill Co. N.Y. Chap, 3 255 (1970).Google Scholar
  14. 14-.
    A.F. Nikolayev, V.M. Gal, Perinm Vysoknmol Soedinm Ser, A, 9 2469 (1967).Google Scholar
  15. 15-.
    T. Siyam and R. Ayoub, 3rd Arab Inter. Conf. On Polymer Sci. and Technology, 4–7 Sept. Fac. of Sci. Mansouria Univ., Mansoria, Egypt (1995).Google Scholar
  16. 16-.
    T. Siyam, I.M. El-Naggar and HF. Aly, Nuclear and Hazardous Waste Management Inter. Topical Spectrum, 96, 66, 18–23 Aug. Seattle, Washington (1996).Google Scholar
  17. 17-.
    Candau, J. Bastide and M. Delsanti, Structureal, Elastic and Dynamic Properties of Swolen Polymer Networks, In: Advances in Polymer Science (Polymer Netwarks) Springer-Verlag Berlin Heidelberg N.Y. (1982).Google Scholar
  18. 18-.
    K. Fujimore, Polym. Bull., 8 207 (1982).CrossRefGoogle Scholar
  19. 19-.
    K. Fujimore, G.T. Trainor & M.J. Costigan, J. Polym. Sci., A-1, 22 2479 (1984).Google Scholar
  20. 20-.
    T. Siyam and E. Hanna, J. Macromol. Sci. Pure Appl. Chem., A31(314) 349 (1994).Google Scholar
  21. 21-.
    T. Siyam, J. Macromol. Sci. Pure Appl. Chem., A32(516) 801 (1995).Google Scholar
  22. 22-.
    T. Siyam, “Gamma-Radiation-Induced Preparation of Polyelectrolytes and Its use for Treatement of Waste Water” In: Chermis noff(ed), Handbook of Engineering Polymeric Materials, p. 119-135, Marel Dekker Inc. Under Puplication.Google Scholar
  23. 23-.
    M.A. Moharram, S.M. Rabie and A.Y. Daghistuni, J. Appl. Polym Sci., 50(3), 459(1993).CrossRefGoogle Scholar
  24. 24-.
    E. J. Goethals, Polymeric Amines and Ammonium Salts, (International Symposium on Polymeric Amines and Ammonium Salts), Ghent, Belgium, 24–26 Sept. 1979, pp. 229, 255, 263271, 282, Pregamon Press (1979).Google Scholar
  25. 25-.
    I. Karatas and G. Irez, J. Macromol. Sci. Pure Appl. Chem., A30(314) 241 (1993).Google Scholar
  26. 26-.
    S. Savost’yanov, V.V. Pbyugin, D.A. Kvitskays and A.N. Pohmarev, Bvestiya-I3 Vestiya Akademii-Nauk-Seria-Khimich, 6 1070 (1993).Google Scholar
  27. 27-.
    A.A. Murau, S.V. Probysh, Yu. P. Bajdarovtesv, V.S. Savost, Yanov and A.N. Pohomarev, Bvestiya-I3 Vestiya Akademii-Nauk-Seria-Khimich, 5 865 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • T. Siyam
    • 1
  • Z. H. Abd-Elatif
    • 1
    • 2
  1. 1.Nucl. Chem. Dept. Hot Laboratories CentreAtomic Energy AuthorityEgypt
  2. 2.National Resarch CentreDokki, GizaEgypt

Personalised recommendations