Simulations on Thermoplastic Elastomers from Polypropylene

  • Tarek M. Madkour
  • James E. Mark


Computer simulations have been carried out to investigate sequence lengths, and sequence-length distributions in stereoregular polymers. Simulations were also used to investigate the development of reinforcing crystallites in thermoplastic elastomers. New types of stereoblock polypropylene which have been prepared from some metallocene catalytsts and which function as thermoplastic elastomers through controlled crystallization are of particular interest in this regard. While it is widely believed that the sequence distributions in these polymers is of primary importance in their crystallization, no adequate theory is currently available. In the present investigation, the Windle approach with Monte Carlo methods was used to simulate one hundred copolymeric chains in order to search for crystallizable sequence matches in these polymers. Based on the amounts of crystallinity reported for these polymers at various feed compositions, estimates were made of melting points, interfacial free energies, standard free energies of fusion, and Young’s moduli at small extensions. The approach is also useful for predicting the sizes of the crystallites and the minimum sequence lengths required for crystallization.


Molecular Weight Distribution Interfacial Free Energy Thermoplastic Elastomer Percent Crystallinity Simulated Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Coates, G. W.; Waymouth, R. M. Science 1995, 267, 217.CrossRefGoogle Scholar
  2. (2).
    Madkour, T. M.; Mark, J. E. J. Polym. Sci, Polym. Phys., submitted.Google Scholar
  3. (3).
    Natta, G. J. Polym. Sci. 1959, 34, 531.CrossRefGoogle Scholar
  4. (4).
    Collette, J. W.; Tullock, C. W.; MacDonald, R. N.; Buck, W. H.; Su, A. C. L.; Harrell, J. R.; Mülhaupt, R.; Anderson, B. C. Macromolecules 1989, 22, 3851.CrossRefGoogle Scholar
  5. (5).
    Mallin, D. T.; Rausch, M. D.; Lin, Y. G.; Doug, S.; Chien, J. C. W. J. Am. Chem. Soc. 1990, 112, 2030.CrossRefGoogle Scholar
  6. (6).
    Cavallo, L.; Corradini, P.; Guerra, G. Polym. Mat. Eng. Sci. 1996, 74, 421.Google Scholar
  7. (7).
    Coates, G. W.; Bruce, M. D.; Waymouth, R. M. Polym. Prepr. 1996, 37, 337.Google Scholar
  8. (8).
    Newman, S. J. Polym. Sci. 1960, 47, 111.CrossRefGoogle Scholar
  9. (9).
    Cheng, S. Z.; Jonimak, J. J.; Zhang, A.; Hsieh, E. T. Polymer 1991, 32, 648.CrossRefGoogle Scholar
  10. (10).
    Natta, G.; Mazzanti, G.; Grespi, G.; Moraglio, G. Chim. e ind. 1957, 39, 275.Google Scholar
  11. (11).
    Gauthier, W. J.; Corrigan, J. F.; Taylor, N. J.; Collins, S. Macromolecules 1995, 28, 3771.CrossRefGoogle Scholar
  12. (12).
    Grassi, A.; Zambelli, A.; Resconi, L.; Albizzati, E.; Mazzocchi, R. Macromolecules 1988, 21, 617.CrossRefGoogle Scholar
  13. (13).
    Resconi, L.; Jones, R.; Rheingold, A.; Yap., G. Organometallics 1996, 15, 998.CrossRefGoogle Scholar
  14. (14).
    Brintzinger, H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.CrossRefGoogle Scholar
  15. (15).
    Kashiwa, N. Polymer 1980, 12, 603.CrossRefGoogle Scholar
  16. (16).
    Kaminsky, W.; Miri, M.; Sinn, H; Woldt, R. Makromol. Chem. Rapid Commun. 1983, 4, 417.CrossRefGoogle Scholar
  17. (17).
    Flory, P. J. Principles of Polymer Chemistry ‚Cornell University Press, Ithaca, New York, 1953, Chap. 5.Google Scholar
  18. (18).
    Madkour, T. M.; Mark, J. E. Macromolecules 1995, 28, 6865.CrossRefGoogle Scholar
  19. (19).
    Stocker, W.; Magonov, S. N.; Cantow, H.-J.; Wittmann, J. C.; Lotz, B. Macromolecules 1993, 26, 5915.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Tarek M. Madkour
    • 1
  • James E. Mark
    • 1
  1. 1.Department of Chemistry, and the Polymer Research CenterThe University of CincinnatiCincinnatiUSA

Personalised recommendations