Solid State Reactions

  • Paul J. van der Put


The subject of this chapter is the chemistry that can take place in solids, i.e., in a lattice of atoms. In solids, as in all chemistry, a necessary condition for reactions to be possible is sufficient atomic mobility. Atoms in the interior of crystallites or in grain boundaries are fixed. This means that reactions in solids need a comparatively high temperature.1 Moreover, there is no mobility in lattices without point defects such as vacancies or interstitials. In solids that have perfect lattices the atoms are not mobile and there is no chemistry.2–5


Solid State Reaction Powder Particle Diffusion Couple Homogeneous Nucleation Reactive Sinter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. P. Glasser and P. E. Potter. High Temperature Chemistry of Inorganic and Ceramic Materials. The Chemical Society, London (1977).Google Scholar
  2. 2.
    Y. Chen, W. D. Kingery, and R. J. Stokes. Defect Properties and Processing of High-Technology Nonmetallic Materials. MRS, Pittsburgh (1986).Google Scholar
  3. 3.
    L. G. Harrison. The theory of solid state kinetics. In: C. H. Bamford, and C. F. H. Tipper (eds). Comprehensive Chemical Kinetics. Vol 2. Elsevier, Amsterdam (1969), Ch. 5.Google Scholar
  4. 4.
    T. Kudo and K. Fueki. Solid State Ionics. VCH, Weinheim (1990).Google Scholar
  5. 5.
    A. L. Laskar, J. I. Bocket, G. Brebec, and C. Monty (eds). Diffusion in Materials. NATO ASI E 179, Kluwer, Dordrecht (1990).Google Scholar
  6. 6.
    S. J. Schneider (ed). Engineered Materials Handbook, Vol. 4: Ceramic and Glasses. ASM International, Materials Park (1991).Google Scholar
  7. 7.
    S. Engels. Anorganische Festkörperreaktionen. Akademie Verlag, Berlin (1981).Google Scholar
  8. 8.
    H. Schmalzried. Chemical Kinetics of Solids. VCH, Weinheim (1995).CrossRefGoogle Scholar
  9. 9.
    A. M. Alper (ed). Phase Diagrams in Advanced Ceramics. Academic, San Diego (1995).Google Scholar
  10. 10.
    E. S. Machlin. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science. Giro, Croton-on-Hudson (1991).Google Scholar
  11. 11.
    J. H. Westbrook and R. L. Fleischer (eds). Intermetallic Compounds: Principles and Practice. Vol. 2. Wiley, Chichester (1995).Google Scholar
  12. 12.
    E. J. Mittemeijer, Liu Cheng, P. J. van der Schaaf, C. M. Brakman, and B. M. Korevaar. Analysis of non-isothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites. Metall. Trans. 19A, 925 (1988).Google Scholar
  13. 13.
    I. J. McColm. Special ceramics for modern applications: which? why? how? In: R. A. Terpstra, P. P. A. C. Pex, and A. H. de Vries. Ceramic Processing. Chapman and Hall, London (1995).Google Scholar
  14. 14.
    D. W. Richersen. Modern Ceramic Engineering: Properties, Processing, and Use in Design. Marcel Dekker, New York (1982).Google Scholar
  15. 15.
    R. J. Brook (ed). Processing of Ceramics: Materials Science and Technology, Vol. 17, VCH, Weinheim (1996).Google Scholar
  16. 16.
    H. V. Swain (ed). Structure and Properties of Ceramics: Materials Science and Technology, Vol. 11. VCH, Weinheim (1994).Google Scholar
  17. 17.
    A. G. Evans. Considerations of inhomogeneity: Effects in sintering. J. Am. Ceram. Soc. 65, 497 (1982).CrossRefGoogle Scholar
  18. 18.
    A. G. Evans. Inhomogeneous sintering: Stresses, distortion, and damage. In: Y. Chen, W. D. Kingery, and R. J. Stokes (eds.). Defect Properties and Processing of High-Technology Nonmetallic Materials. MRS, Pittsburgh (1986), p. 63.Google Scholar
  19. 19.
    Y. M. Chiang, J. S. Haggerty, R. P. Messner, C. Demetry. Reaction-based processing methods for ceramic-matrix composites. Cer. Bull. 68, 420 (1089).Google Scholar
  20. 20.
    R. J. Brook. Controlled grain growth. In: F. F. Y. Wang (ed). Treatise on Materials Science and Technology, Vol. 9. Ceramic Fabrication Processes. Academic, New York (1976), p. 331.Google Scholar
  21. 21.
    C. H. Hsueh, A. G. Evans, R. M. Cannon, and R. J. Brook. Viscoelastic stresses and sintering damage in heterogeneous powder compacts. Acta Metall. 34, 927 (1986).CrossRefGoogle Scholar
  22. 22.
    A. A. Chernov. Modern Crystallography III: Crystal Growth. Springer, Berlin (1984).CrossRefGoogle Scholar
  23. 23.
    B. C. Kellett and F. F. Lange. Thermodynamics of densification: 1. Sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage. J. Am. Ceram. Soc. 72, 725 (1989).CrossRefGoogle Scholar
  24. 24.
    M. E. Washburn and W. S. Coblenz. Reaction-formed ceramics. Ceram. Bull. 67, 356 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul J. van der Put
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations