Skip to main content

Evolution of the Hominid Hip

  • Chapter
Primate Locomotion

Abstract

The morphology of the hip region, and its functional implications, have figured prominently in discussions of the origin and nature of hominid bipedality (Dart, 1949; Broom and Robinson, 1950; Washburn, 1950; Le Gros Clark, 1955; Mednick, 1955; Napier, 1964, 1967; Day, 1969, 1973; Robinson, 1972; Lovejoy et al., 1973; McHenry, 1975; Wood, 1976; McHenry and Corruccini, 1978; Stern and Susman, 1983, 1991; Susman et al., 1984; Lovejoy, 1988; Berge, 1991; Jungers, 1991). During most of human bipedal gait, the body is balanced over one lower limb (Inman et al., 1981), a biomechanical problem not faced by quadrupeds. The solution to this problem has involved major changes in the form of the human pelvis and proximal femur (as well as structures more distal in the lower limb) from that of our primate quadrupedal contemporaries, and presumably ancestors (Le Gros Clark, 1959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abitbol M (1995) Reconstruction of the STS 14 sacrum and pelvis: Australopithecus africanus. Am. J. Phys. Anthropol. 96:143–158.

    Article  PubMed  CAS  Google Scholar 

  • Aiello LC (1992) Allometry and the analysis of size and shape in human evolution. J. Hum. Evol. 22:127–148.

    Article  Google Scholar 

  • Berge C (1991) Quelle est la significance fonctionelle du pelvis très large de Australopithecus afarensis (AL 228-1)? In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 113–119.

    Google Scholar 

  • Broom R, and Robinson JT (1950) Notes on the pelves of the fossil ape-men. Am. J. Phys. Anthropol. 8:489–494.

    Article  PubMed  CAS  Google Scholar 

  • Cartmill M, and Schmitt D (1996) Pelvic rotation in human walking and running: Implications for early hominid bipedalism. Am. J. Phys. Anthropol. 22:81.

    Google Scholar 

  • Dart RA(1949) Innominate fragments of Australopithecus prometheus. Am. J. Phys. Anthropol. 7:301–333.

    Google Scholar 

  • Day MH (1969) Femoral fragment of a robust australopithecine from Olduvai Gorge, Tanzania. Nature 221:230–233.

    Article  Google Scholar 

  • Day MH (1973) Locomotor features of the lower limb in hominids. Symp. Zool. Soc. Lond. 33:29–51.

    Google Scholar 

  • Ducroquet R, Ducroquet J, and Ducroquet P (1968) Walking and Limping. A Study of Normal and Pathological Walking. Philadelphia: Lippincott.

    Google Scholar 

  • Eberhart HD, Inman VT, and Bresler B (1954) The principle elements in human locomotion. In PE Klopsteg and PD Wilson (eds.): Human Limbs and Their Substitutes. New York: McGraw-Hill, pp. 437–471.

    Google Scholar 

  • Feldesman MR, and Lundy JK (1988) Stature estimates for some African Plio-Pleistocene fossil hominids. J. Hum. Evol. 17:583–596.

    Article  Google Scholar 

  • Franciscus RG, and Holliday TW (1992) Hindlimb skeletal allometry in Plio-Pleistocene hominids with special reference to A.L. 228-1 (“Lucy”). Bull. et Mém. de la Société d’Anthropologie de Paris n.s. 4:5–20.

    Article  Google Scholar 

  • Genoves S (1967) Proportionality of the long bones and their relation to stature among Mesoamericans. Am. J. Phys. Anthropol. 26:67–78.

    Article  PubMed  CAS  Google Scholar 

  • Häusler M, and Schmid P (1995) Comparison of the pelves of Sts 14 and AL 228-1: Implications for birth and sexual dimorphism in australopithecines. J. Hum. Evol. 29:363–383.

    Article  Google Scholar 

  • Hunt K (1994) The evolution of human bipedality: Ecology and functional morphology. J. Hum. Evol. 26:183–202.

    Article  Google Scholar 

  • Inman VT, Ralston HJ, and Todd F (1981) Human Walking. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Jenkins FA (1972) Chimpanzee bipedalism: Cineradiographic analysis and implication for the evolution of gait. Science 178:877–879.

    Article  PubMed  Google Scholar 

  • Johanson DC, and Coppens Y (1976) A preliminary anatomical diagnosis of the first Plio/Pleistocene hominid discoveries in the Central Afar, Ethiopia. Am. J. Phys. Anthropol. 45:217–234.

    Article  Google Scholar 

  • Johanson DC, and Edey MA (1981) Lucy, The Beginnings of Humankind. New York: Simon and Schuster.

    Google Scholar 

  • Johanson DC, Lovejoy CO, Kimbel WH, White TD, Ward SC, Bush ME, Latimer BM, and Coppens Y (1982a) Morphology of the Pliocene partial hominid skeleton (A.L. 228-1) from the Hadar formation, Ethiopia. Am. J. Phys. Anthropol. 57:403–451.

    Article  Google Scholar 

  • Johanson DC, Taieb M, and Coppens Y (1982b) Pliocene hominids from the Hadar Formation, Ethiopia (1973–1977): Stratigraphic, chronologic, and paleoenvironmental contexts, with notes on hominid morphology and systematics. Am. J. Phys. Anthropol. 57:373–402.

    Article  Google Scholar 

  • Jungers WL (1985) Body size and scaling of limb proportions in primates. In WL Jungers (ed.): Size and Scaling in Primate Biology. New York: Plenum Press, pp. 345–381.

    Google Scholar 

  • Jungers WL (1988a) Lucy’s length: Stature reconstruction in Australopithecus afarensis (A.L. 228-1) with implications for other small-bodied hominids. Am. J. Phys. Anthropol. 76:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Jungers WL (1988b) New estimates of body size in australopithecines. In FE Grine (ed.): Evolutionary History of the “Robust” Australopithecines. New York: Aldine de Gruyter, pp. 115–125.

    Google Scholar 

  • Jungers WL (1988c) Relative joint size and hominid locomotor adaptations with implications for the evolution of hominid bipedalism. J. Hum. Evol. 17:247–265.

    Article  Google Scholar 

  • Jungers WL (1990) Scaling of postcranial joint size in hominoid primates. In FK Jouffroy, MH Stack, and C Niemitz (eds.): Gravity, Posture and Locomotion in Primates. Florence: II Sedicesimo, pp. 87–95.

    Google Scholar 

  • Jungers WL (1991) A pygmy perspective on body size and shape in Australopithcus afarensis (AL 228-1, “Lucy”). In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 215–224.

    Google Scholar 

  • Jungers WL, and Stern JT (1983) Body proportions, skeletal allometry and locomotion in the Hadar hominids: A reply to Wolpoff. J. Hum. Evol. 12:673–684.

    Article  Google Scholar 

  • Latimer B, Ohman JC, and Lovejoy CO (1987) Talocrural joint in African hominids: Implications for Australopithecus afarensis. Am. J. Phys. Anthropol. 74:155–175.

    Article  PubMed  CAS  Google Scholar 

  • Latimer B, and Ward CV (1993) The thoracic and lumbar vertebrae. In A Walker and R Leakey (eds.): The Nariokotome Homo Erectus Skeleton. Cambridge: Harvard Univ. Press, pp. 266–293.

    Chapter  Google Scholar 

  • Le Gros Clark WE (1955) The os innominatum of the recent Ponginae with special reference to that of the Australopithecinae. Am. J. Phys. Anthropol. 13:19–27.

    Article  Google Scholar 

  • Le Gros Clark WE (1959) The Antecedents of Man. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Lehmann JF, and De Lateur BJ (1990) Gait analysis: Diagnosis and management. In FJ Kottke and JF Lehmann (eds.): Krusen’s Handbook of Physical Medicine and Rehabilitation. Philadelphia: Saunders, pp. 108–124.

    Google Scholar 

  • Lovejoy CO (1975) Biomechanical perspectives on the lower limb of early hominids. In RH Tuttle (ed.): Primate Functional Morphology and Evolution. The Hague: Mouton, pp. 291–326.

    Google Scholar 

  • Lovejoy CO (1988) Evolution of human walking. Sci. Am. 259:118–125.

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy CO, Heiple KG, and Burstein AH (1973) The gait of Australopithecus. Am. J. Phys. Anthropol. 38:757–780.

    Article  PubMed  CAS  Google Scholar 

  • McHenry HM (1975) Biomechanical interpretation of the early hominid hip. J. Hum. Evol. 4:343–355.

    Article  Google Scholar 

  • McHenry HM (1984) Relative cheek-tooth size in Australopithecus. Am. J. Phys. Anthropol. 64:291–306.

    Article  Google Scholar 

  • McHenry HM (1986) The first bipeds: A comparison of the A. afarensis and A. africanus postcranium and implications for the evolution of bipedalism. J. Hum. Evol. 15:177–191.

    Article  Google Scholar 

  • McHenry HM (1988) New estimates of body weight in early hominids and their significance to encephalization and megadontia in “robust” australopithecines. In FE Grine (ed.): Evolutionary History of the “Robust” Australopithecines. New York: Aldine de Gruyter, pp. 133–148.

    Google Scholar 

  • McHenry HM (1991a) First steps? Analyses of the postcranium of early hominids. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 133–141.

    Google Scholar 

  • McHenry HM (1991b) Sexual dimorphism in Australopithecus afarensis. J. Hum. Evol. 20:21–32.

    Article  Google Scholar 

  • McHenry HM (1992) Body size and proportions in early hominids. Am. J. Phys. Anthropol. 87:407–431.

    Article  PubMed  CAS  Google Scholar 

  • McHenry HM (1994) Early hominid postcrania. Phylogeny and function. In RS Corruccini and RL Ciochon (eds.): Integrative Paths to the Past (Advances in Human Evolution Series, Vol. 2). Englewood Cliffs: Prentice Hall, pp. 168–251.

    Google Scholar 

  • McHenry HM, and Corruccini RS (1978) The femur in early human evolution. Am. J. Phys. Anthropol. 49:473–488.

    Article  PubMed  CAS  Google Scholar 

  • McLeish RD, and Charnley J (1970) Abduction forces in the one-legged stance. J. Biomech. 3:191–209.

    Article  PubMed  CAS  Google Scholar 

  • Mednick LW (1955) The evolution of the human ilium. Am. J. Phys. Anthropol. 13:203–216.

    Article  PubMed  CAS  Google Scholar 

  • Nagurka ML, and Hayes WC (1980) An interactive graphics package for calculating cross-sectional properties of complex shapes. J. Biomech. 13:59–64.

    Article  PubMed  CAS  Google Scholar 

  • Napier JR (1964) The evolution of bipedal walking in the hominids. Arch. Biol. (Leige) 75 (Suppl.):673–708.

    Google Scholar 

  • Napier JR (1967) The antiquity of human walking. Sci. Am. 216:56–66.

    Article  PubMed  CAS  Google Scholar 

  • Olivier G (1976) The stature of Australopithecus. J. Hum. Evol. 5:529–534.

    Article  Google Scholar 

  • Porter AMW (1995) The body weight of AL 228-1 (“Lucy”: A new approach using estimates of skeletal length and the body mass index. Int. J. Osteoarch. 5:203–212.

    Article  Google Scholar 

  • Poss R, and Sledge CB (1981) Surgery of the hip in rheumatoid arthritis. In ED Harris, S Ruddy, and CB Sledge (eds.): Textbook of Rheumatology, Vol. II. Philadelphia: Saunders, pp. 1960–1972.

    Google Scholar 

  • Preuschoft H, and Witte H (1991) Biomechanical reasons for the evolution of hominid body shape. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: ditions du CNRS, pp. 59–77.

    Google Scholar 

  • Rader WT, and Peters CR (1993) Hypertrophy of the acetabulocristal buttress in Homo sapiens. Am. J. Phys. Anthropol. 92:149–153.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TR (1987) Stride length and its determinants in humans, early hominids, primates, and mammals. Am. J. Phys. Anthropol. 72:101–115.

    Article  PubMed  CAS  Google Scholar 

  • Robinson JT (1972) Early Hominid Posture and Locomotion. Chicago: Univ. Chicago Press.

    Google Scholar 

  • Rose MD (1984) Food acquisition and the evolution of positional behavior: The case of bipedalism. In DJ Chivers, BA Wood, and A Bilsborough (eds.): Food Acquisition and Processing in Primates. New York: Plenum, pp. 509–523.

    Chapter  Google Scholar 

  • Ruff CB (1987a) Sexual dimorphism in human lower limb bone structure: Relationship to subsistence strategy and sexual division of labor. J. Hum. Evol. 16:391–416.

    Article  Google Scholar 

  • Ruff CB (1987b) Structural allometry of the femur and tibia in Hominoidea and Macaca. Folia. Primatol. 48:9–49.

    Article  PubMed  CAS  Google Scholar 

  • Ruff CB (1988) Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling. J. Hum. Evol. 17:687–714.

    Article  Google Scholar 

  • Ruff CB (1991) Climate, body size and body shape in hominid evolution. J. Hum. Evol. 21:81–105.

    Article  Google Scholar 

  • Ruff CB (1994) Morphological adaptation to climate in modern and fossil hominids. Yrbk. Phys. Anthropol. 37:65–107.

    Article  Google Scholar 

  • Ruff CB (1995) Biomechanics of the hip and birth in early Homo. Am. J. Phys. Anthropol. 98:521–574.

    Article  Google Scholar 

  • Ruff CB, and Runestad JA (1992) Primate limb bone structural adaptations. Ann. Rev. Anthrop. 21:407–433.

    Article  Google Scholar 

  • Ruff CB, Trinkaus E, and Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176.

    Article  PubMed  CAS  Google Scholar 

  • Ruff CB, Trinkaus E, Walker A, and Larsen CS (1993) Postcranial robusticity in Homo, I: Temporal trends and mechanical interpretation. Am. J. Phys. Anthropol. 91:21–53.

    Article  PubMed  CAS  Google Scholar 

  • Ruff CB, and Walker A (1993) Body size and body shape. In A Walker and R Leakey (eds.): The Nariokotome Homo Erectus Skeleton. Cambridge: Harvard Univ. Press, pp. 234–265.

    Chapter  Google Scholar 

  • Schmid P (1983) Eine rekonstruktion des Skelettes von A.L. 228-1 (Hadar) und deren konsequenzen. Folia Primatol. 40:283–306.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt D, Stern JR, and Larson SG (1996) Compliant gait in humans: Implications for substrate reaction forces during australopithecine bipedalism. Am. J. Phys. Anthropol. Suppl. 22:209.

    Google Scholar 

  • Stern JT, and Susman RL (1983) The locomotor anatomy of Australopithecus afarensis. Am. J. Phys. Anthropol. 60:279–317.

    Article  PubMed  Google Scholar 

  • Stern JT, and Susman RL (1991) “Total morphological pattern” versus the “magic trait”: Conflicting approaches to the study of early hominid bipedalism. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 99–111.

    Google Scholar 

  • Susman RL, Stern JT, Jr., and Jungers WL (1984) Arboreality and bipedality in the Hadar hominids. Folia Primatol. 43:113–156.

    Article  PubMed  CAS  Google Scholar 

  • Suzman IM (1980) A new estimate of body weight in South African australopithecines. In RE Leakey and BA Ogot (eds.): Proceedings of the 8th Panafrican Congress of Prehistory and Quaternary Studies Nairobi, 5 to 10 September 1977. Nairobi: The International Louis Leakey Memorial Institute for African Prehistory, pp. 175–179.

    Google Scholar 

  • Tague RG, and Lovejoy CO (1986) The obstetric pelvis of A.L. 228-1 (Lucy). J. Hum. Evol. 15:237–255.

    Article  Google Scholar 

  • Trinkaus E, Churchill SE, and Ruff CB (1994) Postcranial robusticity in Homo, II: Humeral bilateral asymmetry and bone plasticity. Am. J. Phys. Anthropol. 93:1–34.

    Article  PubMed  CAS  Google Scholar 

  • Walker A (1973) New Australopithecus femora from East Rudolf, Kenya. J. Hum. Evol. 2:545–555.

    Article  Google Scholar 

  • Washburn SL (1950) The analysis of primate evolution with particular reference to the origin of man. Cold Spring Harbor Symp. Quant. Biol. 15:67–78.

    Article  PubMed  CAS  Google Scholar 

  • Weidenreich F (1941) The extremity bones of Sinanthropus pekinensis. Paleont. Sinica (N.S. D.) 5D: 1–150.

    Google Scholar 

  • White TD, and Suwa G (1987) Hominid footprints at Laetoli: Facts and interpretations. Am. J. Phys. Anthropol. 72:485–514.

    Article  PubMed  CAS  Google Scholar 

  • Wolpoff MH (1976) Fossil hominid femora. Nature 264:812–813.

    Article  PubMed  CAS  Google Scholar 

  • Wood B (1976) Remains attributable to Homo in East Rudolf succession. In Y Coppens, FC Howell, GL Issac and REF Leakey (eds.): Earliest Man and Environments in the Lake Rudolf Basin. Chicago: Univ. of Chicago Press, pp. 490–506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruff, C. (1998). Evolution of the Hominid Hip. In: Strasser, E., Fleagle, J.G., Rosenberger, A.L., McHenry, H.M. (eds) Primate Locomotion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0092-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0092-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0094-4

  • Online ISBN: 978-1-4899-0092-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics