Heel, Squat, Stand, Stride

Function and Evolution of Hominoid Feet
  • Russell H. Tuttle
  • Benedikt Hallgrímsson
  • Tamara Stein

Abstract

Primate feet are remarkably diverse due to natural selection for a notable variety of positional behavior in a wide spectrum of arboreal and terrestrial niches (Schultz, 1963). Although positional behavior embraces both posture and locomotion, special features of primate feet are customarily related almost exclusively to locomotor adaptations and behavior, with posture treated secondarily or not considered at all (Tuttle et al., in press). Based on comparative functional morphological studies of extant apes and Pliocene-Recent hominids, we reason that squatting and bipedal standing were important components of the selective complex that produced the human foot, which has been associated more commonly with bipedal locomotion (Latimer and Lovejoy, 1989) instead of posture per se.

Keywords

Positional Behavior Metatarsal Head Metatarsophalangeal Joint Early Hominid Bipedal Locomotion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basmajian JV, and De Luca CJ (1985) Muscles Alive, 5th ed., Baltimore: Williams and Wilkins.Google Scholar
  2. Capecchi V (1984) Reflections on the footprints of the hominids found at Laetoli. Anthropologischer Anzeiger 42:81–86.Google Scholar
  3. Carrier DR, Heglund NC, and Earls KD (1994) Variable gearing during locomotion in the human musculoskeletal system. Science 265:651–653.PubMedCrossRefGoogle Scholar
  4. Clarke RJ (1979) Early hominid footprints from Tanzania. S. Af. J. Sci. 75:148–149.Google Scholar
  5. Coppens Y (1991) L’évolution des hominidés, de leur locomotion et de leurs environnnements. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 295–301.Google Scholar
  6. Day MH (1976) Hominid postcranial remains from the East Rudolf succession: A review. In Y Coppens, FC Howell, GL Isaac, and REF Leakey (eds.): Earliest Man and Environments in the Lake Rudolf Basin. Chicago: University of Chicago Press, pp. 507–521.Google Scholar
  7. Day MH, and Napier JR (1964) Hominid fossils from Bed I Olduvai Gorge, Tanganyika: Fossil foot bones. Nature 201:967–970.CrossRefGoogle Scholar
  8. Day MH, and Wickens EH (1980) Laetoli Pliocene hominid footprints and bipedalism. Nature 286:385–387.CrossRefGoogle Scholar
  9. Day MH, and Wood BA (1968) Functional affinities of the Olduvai hominid 8 talus. Man 3:440–455.CrossRefGoogle Scholar
  10. Deloison Y (1985) Comparative study of calcanei of primates and Pan-Australopithecus-Homo relationship. In PV Tobias (ed.): Hominid Evolution: Past, Present and Future. New York: Liss, pp. 143–147.Google Scholar
  11. Deloison Y (1991) Les Australopitheques marchaient-ils comme nous? In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 177–186.Google Scholar
  12. Deloison Y (1992) Empreintes de pas à Laetoli (Tanzanie). Leur apport à une meilleure connaissance de la locomotion des Hominidés fossiles. C. R. Acad. Sci., Sér. II, 315:103–109.Google Scholar
  13. Drake R, and Curtis GH (1987) K-Ar geochronology of the Laetoli fossil localities. In MD Leakey and JM Harris (eds.): Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarenden Press, pp. 48–52.Google Scholar
  14. Doran DM (1993) Sex differences in adult chimpanzee positional behavior: The influence of body size on locomotion and posture. Am. J. Phys. Anthropol. 91:99–115.PubMedCrossRefGoogle Scholar
  15. Duncan AS, Kappelman J, and Shapiro LJ (1994) Metatarsophalangeal joint function and positional behavior in Australopithecus afarensis. Am. J. Phys. Anthropol. 93:67–81.PubMedCrossRefGoogle Scholar
  16. Feibel CS, Agnew N, Latimer B, Demas M, Marshall F, Waane AC, and Schmid P (1996) The Laetoli hominid footprints — a preliminary report on the conservation and scientific restudy. Evol. Anthropol. 4:149–154.CrossRefGoogle Scholar
  17. Gebo DL (1992) Plantigrady and foot adaptation in African apes: Implications for hominid origins. Am. J. Phys. Anthropol. 89:29–58.PubMedCrossRefGoogle Scholar
  18. Gebo DL (1993a) Functional morphology of the foot in primates. In DL Gebo (ed.): Postcranial Adaptation in Nonhuman Primates. DeKalb: Northern Illinois University Press, pp. 175–196.Google Scholar
  19. Gebo DL (1993b) Reply to Meldrum. Am. J. Phys. Anthropol. 91:382–385.CrossRefGoogle Scholar
  20. Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: Historical precursors of hominid bipedalism. Am. J. Phys. Anthropol. 101:55–92.PubMedCrossRefGoogle Scholar
  21. Gomberg DN (1985) Functional differences of three ligaments of the transverse tarsal joint in hominoids. J. Hum. Evol. 14:553–562.CrossRefGoogle Scholar
  22. Gomberg DN, and Latimer B (1984) Observations on the transverse tarsal joint of A. afarensis. Am. J. Phys. Anthropol. 63:164.Google Scholar
  23. Harris JM (1987) Summary. In MD Leakey and JM Harris (eds.): Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarenden Press, pp. 524–531.Google Scholar
  24. Hunt KD (1991) Mechanical implications of chimpanzee positional behavior. Am. J. Phys. Anthropol. 86:521–536.PubMedCrossRefGoogle Scholar
  25. Hunt KD (1992) Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe Stream National Parks, Tanzania. Am. J. Phys. Anthropol. 87:83–105.PubMedCrossRefGoogle Scholar
  26. Hunt KD (1994) The evolution of human bipedality: Ecology and functional morphology. J. Hum. Evol. 26:183–202.CrossRefGoogle Scholar
  27. Johanson DC, Taieb M, and Coppens Y (1982) Pliocene hominids from the Hadar Formation, Ethiopia (1973–1977): Stratigraphic, chronologic, and paleoenvironmental contexts, with notes on hominid morphology and systematics. Am. J. Phys. Anthropol. 57:373–402.CrossRefGoogle Scholar
  28. Jungers WL (1991) A pygmy perspective on body size and shape in Australopithecus afarensis (AL 288-1, “Lucy”). In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 215–224.Google Scholar
  29. Lamy P (1983) Le système podal de certains hominidés fossiles du Plio-Pleistocène d’Afrique de l’est: étude morpho-dynamique. L’Anthropologie (Paris) 87:435–464.Google Scholar
  30. Lamy P (1986) The settlement of the longitudinal plantar arch of some African Plio-Pleistocene hominids: A morphological study. J. Hum. Evol. 15:31–46.CrossRefGoogle Scholar
  31. Langdon JH, Bruckner J, and Baker HH (1991) Pedal mechanics and bipedalism in early hominids. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 159–167.Google Scholar
  32. Latimer B (1991) Locomotor adaptations in Australopithecus afarensis: The issue of arboreality. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 169–176.Google Scholar
  33. Latimer BM, and Lovejoy CO (1989) The calcaneus ofAustralopithecus afarensis and its implications for the evolution of bipedality. Am. J. Phys. Anthropol. 78:369–386.PubMedCrossRefGoogle Scholar
  34. Latimer BM, and Lovejoy CO (1990a) Hallucal tarsometatarsal joint in Australopithecus afarensis. Am. J. Phys. Anthropol. 82:125–133.PubMedCrossRefGoogle Scholar
  35. Latimer BM, and Lovejoy CO (1990b) Metatarsophalangeal joints of Australopithecus afarensis. Am. J. Phys. Anthropol. 83:13–23.PubMedCrossRefGoogle Scholar
  36. Latimer BM, Lovejoy CO, Johanson DC, and Coppens Y (1982) Hominid tarsal, metatarsal, and phalangeal bones recovered from the Hadar Formation: 1974–1977 collection. Am. J. Phys. Anthropol. 57:701–719.CrossRefGoogle Scholar
  37. Latimer BM, Ohman JC, and Lovejoy CO (1987) Talocrurual joint in African hominids: Implications for Australopithecus afarensis. Am. J. Phys. Anthropol. 74:155–175.PubMedCrossRefGoogle Scholar
  38. Leakey MD (1987) The hominid footprints. Introduction. In MD Leakey and JM Harris (eds.): Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarenden Press, pp. 490–496.Google Scholar
  39. Leakey MD, and Hay RL (1979) Pliocene footprints in the Laetolil Beds, northern Tanzania. Nature 278:317–323.CrossRefGoogle Scholar
  40. Lisowski FP, Albrecht GH, and Oxnard CE (1976) African fossil tali: Further multivariate morphometric studies. Am. J. Phys. Anthropol. 45:5–18.PubMedCrossRefGoogle Scholar
  41. Lovejoy CO, Johanson DC, and Coppens Y (1982) Hominid lower limb bones recovered from the Hadar Formation: 1974–1977. Am. J. Phys. Anthropol. 57:679–700.CrossRefGoogle Scholar
  42. McHenry HM (1986) The first bipeds: A comparison of the A. afarensis and A. africanus postcranium and implications for the evolution of bipedalism. J. Hum. Evol. 15:177–191.CrossRefGoogle Scholar
  43. McHenry HM (1991) First steps? Analyses of the postcranium of early hominids. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 133–141.Google Scholar
  44. Meldrum DJ (1993) On plantigrady and quadrupedalism. Am. J. Phys. Anthropol. 91:379–381.PubMedCrossRefGoogle Scholar
  45. Morton DJ (1935) The Human Foot. New York: Columbia University Press.Google Scholar
  46. Musiba CM, Tuttle RH, Hallgrímsson B, and Webb DM (1997) Swift and sure-footed on the savanna: A study of Hadzabe gaits and feet in northern Tanzania. Am. J. Hum. Biol. 9:303–321.CrossRefGoogle Scholar
  47. Nicol AC, and Paul JP (1988) Biomechanics. In B Helal and D Wilson (eds.): The Foot, Vol. 1. Edinburgh: Churchill Livingstone, pp. 75–86.Google Scholar
  48. Oxnard CE (1972) Some African fossil foot bones: A note on the interpolation of fossils into a matrix of extant species. Am. J. Phys. Anthropol. 37:3–12.PubMedCrossRefGoogle Scholar
  49. Oxnard CE (1973) Form and Pattern in Human Evolution. Chicago: University of Chicago Press.Google Scholar
  50. Oxnard CE (1984) The Order of Man. New Haven: Yale University Press.Google Scholar
  51. Oxnard CE, and Lisowski FP (1980) Functional articulation of some hominoid foot bones: Implications for the Olduvai (Hominid 8) foot. Am. J. Phys. Anthropol. 52:107–117.PubMedCrossRefGoogle Scholar
  52. Remis M (1995) Effects of body size and social context on the arboreal activities of lowland gorillas in the Central African Republic. Am. J. Phys. Anthropol. 97:413–433.PubMedCrossRefGoogle Scholar
  53. Robbins LM (1987) Hominid footprints from Site G. In MD Leakey and JM Harris (eds.): Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarenden Press, pp. 497–502.Google Scholar
  54. Sarmiento EE (1983) The significance of the heel process in anthropoids. Int. J. Primatol. 4:127–152.CrossRefGoogle Scholar
  55. Sarmiento EE (1994) Terrestrial traits in the hands and feet of gorillas. American Museum Novitates, no. 3091, 56 pp.Google Scholar
  56. Schmitt D, and Larson SG (1995) Heel contact as a function of substrate type and speed in primates. Am. J. Phys. Anthropol. 96:39–50.PubMedCrossRefGoogle Scholar
  57. Schultz AH (1963) Relations between the lengths of the main parts of the foot skeleton in primates. Folia Primatol. 1:150–171.CrossRefGoogle Scholar
  58. Stein TA (1995) Who’s in Charge: Observations of Social Behavior in a Captive Group of Western Lowland Gorillas. M.A. thesis. The University of Chicago.Google Scholar
  59. Susman RL, Stern JT, Jr, and Jungers WL (1984) Arboreality and bipedality in the Hadar homionids. Folia Primatol. 43:113–156.PubMedCrossRefGoogle Scholar
  60. Trinkaus E (1975) Squatting among the Neandertals: A problem in the behavioral interpretation of skeletal morphology. J. Arch. Science 2:327–351.CrossRefGoogle Scholar
  61. Trinkaus E (1983) The Shanidar Neandertals. New York: Academic Press.Google Scholar
  62. Tuttle RH (1970) Postural, propulsive, and prehensile capabilities in the cheiridia of chimpanzees and other great apes. In GH Bourne (ed.): The Chimpanzee, Vol. 2. Basel: Karger, pp. 167–253.Google Scholar
  63. Tuttle RH (1972) Functional and evolutionary biology of hylobatid hands and feet. In DM Rumbaugh (ed.): Gibbon and Siamang, Vol. 1. Basel: Karger, pp. 136–206.Google Scholar
  64. Tuttle RH (1981) Evolution of hominid bipedalism and prehensile capabilities. Phil. Trans.Royal Soc, Lond. B-292: 89–94.CrossRefGoogle Scholar
  65. Tuttle RH (1985) Ape footprints and Laetoli impressions: A response to the SUNY claims. In PV Tobias (ed.): Hominid Evolution: Past, Present and Future. New York: Liss, pp. 129–133.Google Scholar
  66. Tuttle RH (1987) Kinesiological inferences and evolutionary impilications from Laetoli bipedal trails G-1, G-2/3, and A. In MD Leakey and JM Harris (eds.): Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarenden Press, pp. 503–523.Google Scholar
  67. Tuttle RH (1988) What’s new in African paleoanthropology? Ann. Rev. Anthropol. 17:391–426.CrossRefGoogle Scholar
  68. Tuttle RH (1994) Up from electromyography: Primate energetics and the evolution of human bipedalism. In RS Corruccini and RL Ciochon (eds.): Integrative Paths to the Past: Paleoanthropological Advances in Honor of F.C. Howell, New York: Prentice Hall, pp. 269–284.Google Scholar
  69. Tuttle RH (1996) The Laetoli hominid G footprints. Where do they stand today? Kaupia 6:91–102.Google Scholar
  70. Tuttle RH (submitted). Animalia, Homo, and the Kingdom of God. In TL Gilbert (ed.): The Epic of Creation: Scientific and Religious Perspectives on our Origins.Google Scholar
  71. Tuttle RH, and Cortright GW (1988) The positional behavior, adaptive complexes and evolution of Pongo pygmaeus. In JH Schwartz (ed.): Orang-utan Biology. Oxford: Oxford University Press, pp. 311–330.Google Scholar
  72. Tuttle RH, and Watts DP (1985) The positional behavior and adaptive complexes ofPan gorilla. In S Kondo (ed.): Primate Morphophysiology, Locomotor Analyses and Human Bipedalism. Tokyo: Univeristy of Tokyo Press, pp. 261–28.Google Scholar
  73. Tuttle RH, Webb DM, and Baksh M (1991) Laetoli toes and Australopithecus afarensis. Hum. Evol. 6:193–222.CrossRefGoogle Scholar
  74. Tuttle RH, Webb DM, Weidl E, and Baksh M (1990) Further progress on the Laetoli trails. J. Arch. Science 17:347–362.CrossRefGoogle Scholar
  75. Tuttle RH, Webb DM, Tuttle NI, and Baksh M (1992) Footprints and gaits of bipedal apes, bears and barefoot people: Perspectives on Pliocene tracks. In S Matano, RH Tuttle, H Ishida, and M Goodman (eds.): Topics in Primatology, Vol. 3: Evolutionary Biology, Reproductive Endocrinology and Virology. Tokyo: University of Tokyo Press, pp. 221–242.Google Scholar
  76. Tuttle RH, Yant L, Hallgnmsson B, and Basmajian JV (in press) Hominoid heels. Proc.of the XVth Congress of the International Primatological Society, Kuta Bali, Indonesia, August 4, 1994.Google Scholar
  77. Vancata V (1991) The roots of hominid bipedality. In Y Coppens and B Senut (eds.): Origine(s) de la Bipédie chez les Hominidés, Cah. Paléoanthrop. Paris: Editions du CNRS, pp. 143–158.Google Scholar
  78. White TD (1980) Evolutionary implications of Pliocene hominid footprints. Science 208:175–176.PubMedCrossRefGoogle Scholar
  79. Wood BA (1974a) Evidence on the locomotor pattern of Homo from early Pleistocene of Kenya. Nature 251:135–136.PubMedCrossRefGoogle Scholar
  80. Wood BA (1974b) A Homo talus from East Rudolf, Kenya. J. Anat. 117:203–204.Google Scholar
  81. Wood BA (1976) Remains attributable to Homo in the East Rudolf succession. In Y Coppens, FC Howell, GLI Isaac, and REF Leakey (eds.): Earliest Man and Environments in the Lake Rudolf Basin. Chicago: University of Chicago Press, pp. 490–506.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Russell H. Tuttle
    • 1
  • Benedikt Hallgrímsson
    • 2
  • Tamara Stein
    • 1
  1. 1.Department of AnthropologyThe University of ChicagoChicagoUSA
  2. 2.Department of AnatomyUniversity of Puerto RicoSan JuanUSA

Personalised recommendations