Skip to main content

Body Size and Scaling of Long Bone Geometry, Bone Strength, and Positional Behavior in Cercopithecoid Primates

  • Chapter
Book cover Primate Locomotion

Abstract

Allometry in the strictest biometrical sense—size-correlated differences in shape — explains nothing. It is also not a biological “principle” (Smith, 1980; Jungers, 1984; Jungers et al., 1995; contra Gould, 1975; contra Martin, 1993). Rather, allometry is merely a quantitative description or signal that may or may not serve to test an explicit hypothesis. Without explicit hypotheses of how and why things should change as a function of body size (i.e., similarity criteria), allometry cannot be diagnosed except with respect to the statistical, dimensional null hypothesis of “isometry” or geometric similarity. In special circumstances, isometry can itself be a hypothetical criterion of biological similarity (Alexander et al., 1979; Biewener, 1990; Prothero, 1992). If such criteria cannot be specified and justified a priori, it also follows that even when allometry is discovered, it cannot be assumed that the observed size-correlated differences are evidence of size-required changes sufficient to insure “functional equivalence” (Smith, 1980). Empirical lines used to describe allometric patterns of interspecific scaling can rarely, if ever, be rationalized into meaningful, adaptive “criteria of subtraction” for the subsequent analysis of residuals (Smith, 1984; Jungers et al., 1995). The scaling of mammalian long-bone dimensions makes these points clearly and unequivocally: although long bone robusticity is expected to increase with body size according to most biomechanical theories, positively allometric distortions in the shape of the long bones of larger vertebrates do not produce functional equivalence in any mechanical or behavioral sense. To the contrary, further behavioral and structural modifications are still required to maintain adequate safety factors at larger body sizes (Biewener, 1982, 1990; Rubin and Lanyon, 1984; Selker and Carter, 1989; Bertram and Biewener, 1990; Demes and Jungers, 1993; Jungers and Burr, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello LC (1981) The allometry of primate body proportions. Symp. Zool. Soc. Lond. 48:331–358.

    Google Scholar 

  • Alexander R McN (1980) Forces in animal joints. Engineering in Medicine 9:93–97.

    Article  Google Scholar 

  • Alexander R McN (1983) On the massive legs of a Moa (Pachyornis elephantopus, Dinornithes). J. Zool., Lond. 201:363–376.

    Article  Google Scholar 

  • Alexander R McN (1985a) The maximum forces exerted by animals. J. exp. Biol. 115:231–238.

    PubMed  CAS  Google Scholar 

  • Alexander R McN (1985b) Body size and limb design in primates and other mammals. In WL Jungers (ed.): Size and Scaling in Primate Biology. New York: Plenum Press, pp. 337–343.

    Google Scholar 

  • Alexander R McN (1988) Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University Press.

    Google Scholar 

  • Alexander R McN (1989) Mechanics of fossil vertebrates. J. Geol. Soc. Lond. 146:41–52.

    Article  Google Scholar 

  • Alexander R McN (1991) Elastic mechanisms in primate locomotion. Z. Morph. Anthropol. 78:315–320.

    CAS  Google Scholar 

  • Alexander R McN, Jayes AS, Maloiy GMO, and Wathuta EM (1979) Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). J. Zool., Lond. 189:305–314.

    Article  Google Scholar 

  • Alexander R McN, and Maloiy GMO (1984) Stride lengths and stride frequencies of primates. J. Zool., Lond. 202:577–582.

    Article  Google Scholar 

  • Bertram JEA, and Biewener AA (1990) Differential scaling of the long bones in the terrestrial Carnivora and other mammals. J. Morph. 204:157–169.

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA (1982) Bone strength in small mammals and bipedal birds: Do safety factors change with body size? J. exp. Biol. 98:289–301.

    CAS  Google Scholar 

  • Biewener AA (1989) Mammalian terrestrial locomotion and size. BioSci. 39:776–783.

    Article  Google Scholar 

  • Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250:1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA (1991) Musculoskeletal design in relation to body size. J. Biomech. 24(suppl. 1): 19–29.

    Article  PubMed  Google Scholar 

  • Biewener AA (1993) Safety factors in bone strength. Calcif. Tissue Int. 53 (suppl.):S68–S74.

    Article  PubMed  Google Scholar 

  • Biknevicius AR (1993) Biomechanical scaling of limb bones and differential limb use in caviomorph rodents. J. Mammal. 74:95–107.

    Article  Google Scholar 

  • Burr DB, Ruff CB, and Johnson C (1989) Structural adaptations of the femur and humerus to arboreal and terrestrial environments in three species of macaque. Am. J. Phys. Anthropol. 79:357–368.

    Article  PubMed  CAS  Google Scholar 

  • Cant JGH (1994) Positional behavior of arboreal primates and habitat compliance. In B Thierry (ed.): Current Primatology, Vol. 1. Ecology and Evolution. Strasbourg: Université Louis Pasteur, pp. 187–193.

    Google Scholar 

  • Casinos A, Bou J, Castiella MJ, and Viladiu C (1986) On the allometry of long bones in dogs. J Morph. 190:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Clarke MRB (1980) The reduced major axis of a bivariate sample. Biometrika 67:441–446.

    Article  Google Scholar 

  • Cleveland WS (1981) LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Amer. Statistician 35:54.

    Article  Google Scholar 

  • Crompton RH, Sellers WI, and Gunther MM (1993) Energetic efficiency and ecology as selective forces in the saltatory adaptation of prosimian primates. Proc. Roy. Soc. Lond.(B) 254:41–45.

    Article  CAS  Google Scholar 

  • Demes B, and Jungers WL (1993) Long bone cross-sectional dimensions, locomotor adaptations and body size in prosimian primates. J Hum. Evol. 25:57–74.

    Article  Google Scholar 

  • Demes B, Jungers WL, Gross TS, and Fleagle JG (1995) Kinetics of leaping primates: Influence of substrate orientation and compliance. Am. J. Phys. Anthropol. 96:419–430.

    Article  PubMed  CAS  Google Scholar 

  • Demes B, Larson SG, Stern JT Jr., Jungers WL, Biknevicius AR, and Schmitt D (1994) The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered. J. Hum. Evol. 26:353–374.

    Article  Google Scholar 

  • Demes B, Jungers WL, and Selpien K (1991) Body size, locomotion, and long bone cross-sectional geometry in indriid primates. Am. J. Phys. Anthropol. 86:537–547.

    Article  PubMed  CAS  Google Scholar 

  • Economos AC (1983) Elastic and/or geometric similarity in mammalian design? J. Theor. Biol. 103:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am. Natur. 125:1–15.

    Article  Google Scholar 

  • Fleagle JG (1988) Primate Adaptation and Evolution. New York: Academic Press.

    Google Scholar 

  • Gautier-Hion A (1975) Dimorphisme sexuel et organisation sociale chez les cercopithecines forestiers Africains. Mammalia 39:365–374.

    Article  Google Scholar 

  • Gilbert JA, Skrzynski MC, and Lester GE (1989) Cross-sectional moment of inertia of the distal radius from absorptiometric data. J. Biomech. 22:751–754.

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1975) On the scaling of tooth size in mammals. Am. Zool. 15:351–362.

    Google Scholar 

  • Grine FE, Jungers WL, Tobias PV, and Pearson OM (1995) Fossil Homo femur from Berg Aukas, Northern Namibia. Am. J. Phys. Anthropol. 97:151–185.

    Article  PubMed  CAS  Google Scholar 

  • Hardie W (1990) Applied Nonparametric Regression. Cambridge: Cambridge Universityn Press.

    Book  Google Scholar 

  • Hildebrand M (1967) Symmetrical gaits of primates. Am. J. Phys. Anthropol. 26:119–130.

    Article  Google Scholar 

  • Hokkanen JEI (1986) Notes concerning elastic similarity. J. Theor. Biol. 120:499–501.

    Article  Google Scholar 

  • Jolicoeur P, and Mosimann JE (1968) Intervalles de confiance pour la pente de l’axe majeur d’une distribution normale bidimensionnelle. Biom.-Praxim. 9:121–140.

    Google Scholar 

  • Jolly CJ (1972) The classification and natural history of Theropithecus (Simopithecus) (Andrews, 1916), baboons of the African Plio-Pleistocene. Bull. Brit. Mus. (Nat. Hist.) Geol. Ser. 22:1–123.

    Google Scholar 

  • Jungers WL (1984) Aspects of size and scaling in primate biology with special reference to the locomotor skeleton. Yrbk. Phys. Anthropol. 27:73–97.

    Article  Google Scholar 

  • Jungers WL, and Burr DB (1994) Body size, long bone geometry and locomotion in quadrupedal monkeys. Z. Morph. Anthropol. 80:89–97.

    Google Scholar 

  • Jungers WL, Falsetti AB, and Wall CE (1995) Shape, relative size, and size-adjustments in morphometrics. Yrbk. Phys. Anthropol. 38:137–161.

    Article  Google Scholar 

  • Jungers WL and Minns RJ (1979) Computed tomography and biomechanical analysis of fossil long bones. Am. J. Phys. Anthropol. 50:285–290.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T (1991) Long and robust limb bones of primates. In A Ehara (ed.): Primatology Today. Amsterdam: El-sevier Science Publishers, pp. 495–498.

    Google Scholar 

  • Kimura T, Okada M, and Ishida H (1979) Kinesiological characteristics of primate walking: its significance in human walking. In M Morbeck, H Preuschoft, and N Gomberg (eds.): Environment, Behavior and Morphology: Dynamic Interactions in Primates. New York: Fischer, pp. 297–311.

    Google Scholar 

  • Martin RB (1991) Determinants of the mechanical properties of bones. J. Biomech. 24 (suppl. 1):79–88.

    Article  PubMed  Google Scholar 

  • Martin RB, and Burr DB (1984) Non-invasive measurement of long bone cross-sectional moments of inertia by photon absorptiometry. J. Biomech. 17:195–201.

    Article  PubMed  CAS  Google Scholar 

  • Martin RD (1993) Allometric aspects of skull morphology in Theropithecus. In NG Jablonski (ed.): Theropithecus. The Rise and Fall of a Primate Genus. Cambridge: Cambridge University Press, pp. 273–298.

    Chapter  Google Scholar 

  • McArdle BH (1988) The structural relationship: regression in biology. Can. J. Zool. 66:2329–2339.

    Article  Google Scholar 

  • McGraw WS (1996) The positional behavior and habitat use of six sympatric monkeys in the Tai Forest, Ivory Coast. Ph.D Dissertation, State University of New York at Stony Brook.

    Google Scholar 

  • McMahon TA (1973) Size and shape in biology. Science 179:1201–1204.

    Article  PubMed  CAS  Google Scholar 

  • McMahon TA (1975) Using body size to understand the structural design of animals: quadrupedal locomotion. J. Appl. Physiol. 39:619–627.

    PubMed  CAS  Google Scholar 

  • McMahon TA (1984) Muscles, Reflexes, and Locomotion. Princeton: Princeton University Press.

    Google Scholar 

  • Mosimann JE, and James FC (1979) New statistical methods for allometry with applications to Florida red-winged blackbirds. Evolution 23:444–459.

    Article  Google Scholar 

  • Polk JD, Demes B, Jungers WL, Heinrich RE, Biknevicius AR, and Runestad JA (1997) Cross-sectional properties of primate and nonprimate limb bones. Am. J. Phys. Anthropol., suppl. 24:188.

    Google Scholar 

  • Prange HD (1977) The scaling and mechanics of arthropod exoskeletons. In TJ Pedley (ed.): Scale Effects in Animal Locomotion. London: Academic Press, pp. 169–181.

    Google Scholar 

  • Prothero J (1992) Scaling of bodily proportions in adult terrestrial mammals. Am. J. Physiol. 262:R492–R503.

    PubMed  CAS  Google Scholar 

  • Rayner JMV (1985) Linear relationships in biomechanics: the statistics of scaling functions. J. Zool., Lond. 206:415–439.

    Article  Google Scholar 

  • Reynolds TR (1985) Stress on the limbs of quadrupedal primates. Am. J. Phys. Anthropol. 67:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Ricker WE (1984) Computation and uses of central trend lines. Can. J. Zool. 62:1897–1905.

    Article  Google Scholar 

  • Rose MD (1993) Functional anatomy of the elbow and forearm in primates. In DL Gebo (ed.): Postcranial Adaptation in Nonhuman Primates. DeKalb: Northern Illinois University Press, pp. 70–95.

    Google Scholar 

  • Rowe N (1996) The Pictorial Guide to the Living Primates. East Hampton: Pogonias Press.

    Google Scholar 

  • Rubin CT (1984) Skeletal strain and the functional significance of bone architecture. Calcif. Tissue Int. 36:S11–S18.

    Article  PubMed  Google Scholar 

  • Rubin CT, and Lanyon LE (1984) Dynamic strain similarity in vertebrates: an alternative to allometric limb bone scaling. J. Theor. Biol. 107:321–327.

    Article  PubMed  CAS  Google Scholar 

  • Ruff CB (1987) Structural allometry of the femur and tibia in Hominoidea and Macaca. Folia Primatol. 48:9–49.

    Article  PubMed  CAS  Google Scholar 

  • Ruff CB (1989) New approaches to structural evolution of limb bones in primates. Folia Primatol. 53:142–159.

    Article  PubMed  CAS  Google Scholar 

  • Ruff CB and Runestad JA (1992) Primate limb bone structural adaptations. Ann. Rev. Anthropol. 21:407–433.

    Article  Google Scholar 

  • Ruff CB, Trinkaus E, Walker A, and Larsen CP (1993) Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation. Am. J. Phys. Anthropol. 91:21–53.

    Article  PubMed  CAS  Google Scholar 

  • SAS (1985) SAS Users’s Guide: Statistics, Version 5. Cary: SAS Institute Inc.

    Google Scholar 

  • Schaffler MB, Burr DB, Jungers WL, and Ruff CB (1985) Structural and mechanical indicators of limb specialization in primates. Folia Primatol. 45:61–75.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt D (1994) Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J. Hum. Evol. 26:441–458.

    Article  Google Scholar 

  • Schmitt D (1995) A kinematic and kinetic analysis of forelimb use during arboreal and terrestrial quadrupedalism in Old World monkeys. Ph.D Dissertation, State University of New York at Stony Brook.

    Google Scholar 

  • Schmitt D (this volume) Forelimb mechanics during arboreal and terrestrial quadrupedalism in primates. In E Strasser, JG Fleagle, AL Rosenberger, and HM McHenry (eds.) Primate Locomotion: Recent Advances. New York: Plenum Press, pp. 175-200.

    Google Scholar 

  • Schultz AH (1970) The comparative uniformity of the Cercopithecoidea. In J Napier and P Napier (eds.): Old World Monkeys. New York: Academic Press, pp. 39–51.

    Google Scholar 

  • Selker F, and Carter DR (1989) Scaling of long bone fracture strength with animal mass. J. Biomech. 22:1175–1183.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LJ, Anapol FC, and Jungers WL (1997) Interlimb coordination, gait, and neural control of quadrupedal ism in chimpanzees. Am. J. Phys. Anthropol. 102:177–186.

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ (1980) Rethinking allometry. J. Theor. Bio. 87:97–111.

    Article  CAS  Google Scholar 

  • Smith RJ (1984) Determination of relative size: the “criterion of subtraction” problem in allometry. J. Theor. Bio. 108:131–142.

    Article  CAS  Google Scholar 

  • Smith RJ (1994) Degrees of freedom in interspecific allometry: an adjustment for the effects of phylogenetic constraint. Am. J. Phys. Anthropol. 93:95–107.

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ, and Jungers WL (1997) Body mass in comparative primatology. J. Hum. Evol. 32:523–559.

    Article  PubMed  CAS  Google Scholar 

  • Strasser E (1992) Hindlimb proportions, allometry, and biomechanics in Old World monkeys (Primates, Cercopithecidae). Am. J. Phys. Anthropol. 87:187–213.

    Article  PubMed  CAS  Google Scholar 

  • Strasser E and Delson E (1987) Cladistic analysis of cercopithecid relationships. J. Hum. Evol. 16:81–99.

    Article  Google Scholar 

  • Swartz SM (1990) Curvature of the forelimb bones of anthropoid primates: overall patterns and specializations in suspensory species. Am. J. Phys. Anthropol. 83:477–498.

    Article  Google Scholar 

  • Tsutakawa RK, and Hewett JE (1977) Quick test for comparing two populations with bivariate data. Biometrics 33:215–219.

    Article  PubMed  Google Scholar 

  • Van der Meulen MCH, and Carter DR (1995) Developmental mechanics determine long bone allometry. J. Theor. Biol. 172:323–327.

    Article  PubMed  Google Scholar 

  • Yezerinac SM, Lougheed SC, and Handford P (1992) Measurement error and morphometric studies: statistical power and observer experience. Syst. Bio. 41:471–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jungers, W.L., Burr, D.B., Cole, M.S. (1998). Body Size and Scaling of Long Bone Geometry, Bone Strength, and Positional Behavior in Cercopithecoid Primates. In: Strasser, E., Fleagle, J.G., Rosenberger, A.L., McHenry, H.M. (eds) Primate Locomotion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0092-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0092-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0094-4

  • Online ISBN: 978-1-4899-0092-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics