Skip to main content

Use of Strain Gauges in the Study of Primate Locomotor Biomechanics

  • Chapter

Abstract

The strain gauge technique is a relatively recent addition to the catalogue of experimental methods available for functional analyses, especially locomotor studies. Strain gauges track the deformation of objects they are attached to, thus allowing the reconstruction of external forces and loads that cause these deformations. They are restricted to surface use, but extrapolations allow us to reconstruct strain patterns through the object (e.g., Gross et al., 1992; see also example in Figure 8). In the field of biomechanics there are two major applications: the measurement of bone deformations and the instrumentation of force measuring devices. The data in both fields can be used in interpreting musculoskeletal morphology. Functional interpretations of bony morphology have been historically based on correlations between shape and activity. The interface is the mechanical environment into which behaviors translate and in which bone develops, maintains and/or changes its shape. The mechanical demands of particular locomotor modes are commonly derived from behavioral observations in combination with biomechanical models. Measuring the external forces acting on limbs with force transducers is a first step in testing the numerous assumptions inherent in this process. Even with this background information, however, actual loadings of a bone can only be deduced with a certain degree of plausibility. In vivo measurement of bone strain is currently the only method of directly determining the major loading regimes caused by the external forces acting on the bone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biewener AA (1992) In vivo measurement of bone strain and tendon force. In AA Biewener (ed.): Biomechanics — Structures and Systems. Oxford: Oxford University Press, pp. 123–147.

    Google Scholar 

  • Biewener AA, Thomason J, Goodship A, and Lanyon LE (1983) Bone stress in the horse forelimb during locomotion at different gaits: A comparison of two experimental methods. J. Biomech. 16:565–576.

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA, and Taylor CR (1986) Bone strain: A determinant of gait and speed? J. exp. Biol. 123:383–400.

    PubMed  CAS  Google Scholar 

  • Biewener AA, Thomason JJ, and Lanyon LE (1988) Mechanics of locomotion and jumping in the horse (Equus): In vivo stress in the tibia and metatarsus. J. Zool., Lond. 214:547–565.

    Article  Google Scholar 

  • Biewener AA, and Full RJ (1992) Force platform and kinematic analysis. In AA Biewener (ed.): Biomechanics — Structures and Systems. Oxford: Oxford University Press, pp. 45–73.

    Google Scholar 

  • Biewener AA, and Bertram JEA (1993) Skeletal strain patterns in relation to exercise training during growth. J. exp. Biol. 185:51–69.

    PubMed  CAS  Google Scholar 

  • Bonser RHC, and Rayner JMV (1996) Measuring leg thrust forces in the common starling. J. exp. Biol. 199:435–439.

    PubMed  Google Scholar 

  • Bouvier M, and Hylander WL (1984) In vivo bone strain on the dog tibia during locomotion. Acta Anat. 118:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Burr DB, Milgrom C, Fyhrie D, Forwood M, Nysaka M, Finestone A, Hoshaw S, Saiag E, and Simkin A (1996) In vivo measurement of human tibial bone strain during vigorous activity. Bone 18:405–410.

    Article  PubMed  CAS  Google Scholar 

  • Chang YH, Bertram JEA, and Ruina (1997) A dynamic force and moment analysis system for brachiation. J. exp. Biol. 200:3013–3020.

    PubMed  CAS  Google Scholar 

  • Currey J (1984) The Mechanical Adaptations of Bones. Princeton: Princeton University Press.

    Google Scholar 

  • Dally JW, and Riley WF (1991) Experimental Stress Analysis, 3rd ed. New York: McGraw-Hill.

    Google Scholar 

  • Demes B, and Günther MM (1989) Biomechanics and allometric scaling in primate locomotion and morphology. Folia Primatol. 53:125–141.

    Article  PubMed  CAS  Google Scholar 

  • Demes B, and Jungers WL (1993) Long bone cross-sectional dimensions, locomotor adaptations and body size in prosimian primates. J. Hum. Evol. 25:57–74.

    Article  Google Scholar 

  • Demes B, Larson SG, Stern JT Jr., Jungers WL, Biknevicius AR, and Schmitt D (1994) The kinetics of primate quadrupedal ism: “hindlimb drive” reconsidered. J. Hum. Evol. 26:353–374.

    Article  Google Scholar 

  • Demes B, Jungers WL, Gross TS, and Fleagle JG (1995) Kinetics of leaping primates: Influence of substrate orientation and compliance. Am. J. Phys. Anthropol. 96:419–429.

    Article  PubMed  CAS  Google Scholar 

  • Demes B, Stern JT, Rubin CT, Larson SG, and Hausman MR (1997) Bone strain in the macaque ulna during locomotion. Am. J. Phys. Anthropol. Suppl. 24:101.

    Google Scholar 

  • Demes B, Stern JT Jr., Hausman MR, Larson SG, McLeod KJ, and Rubin CT (1998) Patterns of strain in the macaque ulna during functional activity. Am. J. Phys. Anthropol. 106:87–100.

    Article  PubMed  CAS  Google Scholar 

  • Dove RC, and Adams PH (1964) Experimental Stress Analysis and Motion Measurement. Columbus: C.E. Merrill Pub. Co.

    Google Scholar 

  • Evans FG (1953) Methods to study the biomechanical significance of bone form. Am. J. Phys. Anthropol. 11:413–435.

    Article  PubMed  CAS  Google Scholar 

  • Fleagle JG, Simons EL, and Conroy GC (1975) Ape limb bone from the Oligocene of Egypt. Science 189:135–137.

    Article  PubMed  CAS  Google Scholar 

  • Fleagle JG, Stern JT Jr., Jungers WL, Susman RL, Vangor AK, and Wells JP (1981) Climbing: A biomechanical link with brachiation and with bipedalism. Symp. Zool. Soc. Lond. 48:359–375.

    Google Scholar 

  • Gross TS, McLeod KJ, and Rubin CT (1992) Characterizing bone strain distributions in vivo using three triple rosette strain gauges. J. Biomech. 25:1081–1087.

    Article  PubMed  CAS  Google Scholar 

  • Gurdjian ES, and Lissner HR (1944) Mechanism of head injury as studied by the cathode ray oscilloscope. Preliminary report. J. Neurosurgery 1:393–399.

    Article  Google Scholar 

  • Harrison T (1989) New postcranial remains of Victoriapithecus from the middle Miocene of Kenya. J. Hum. Evol. 18:3–54.

    Article  Google Scholar 

  • Heglund NC (1981) A simple design for a force-plate to measure ground reaction forces. J. exp. Biol. 93:333–338.

    Google Scholar 

  • Hirasaki E, Matano S, Nakano, Y, and Ishida H (1992) Vertical climbing in Ateles geoffroyi and Macaca fuscata and its comparative neurological background. In S Matano, R Tuttle, H Ishida, and M Goodman (eds.): Topics in Primatology, Vol. 3. Tokyo: University of Tokyo Press, pp. 167–176.

    Google Scholar 

  • Hirasaki E, Kumakura H, and Matano S (1993) Kinesiological characteristics of vertical climbing in Ateles geoffroyi and Macaca fuscata. Folia Primatol. 61:148–156.

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL (1977) In vivo bone strain in the mandible of Galago crassicaudatus. Am. J. Phys. Anthropol. 46:309–326.

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL (1979) The functional significance of primate mandibular form. J. Morph. 160:223–240.

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL (1984) Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. Am. J. Phys. Anthropol. 64:1–46.

    Article  PubMed  CAS  Google Scholar 

  • Hylander WL, Picq PG, and Johnson KR (1991) Function of the supraorbital region of primates. Archs. Oral Bio. 36:273–281.

    Article  CAS  Google Scholar 

  • Hylander WL, and Johnson KR (1994) Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. Am. J. Phys. Anthropol. 94:523–547.

    Article  PubMed  CAS  Google Scholar 

  • lshida H, Jouffroy FK, and Nakano Y (1990) Comparative dynamics of pronograde and upside down horizontal quadrupedal ism in the slow loris (Nycticebus coucang). In FK Jouffroy, MH Stack, and C Niemitz (eds.): Gravity, Posture and Locomotion in Primates. Firenze: II Sedicesimo, pp. 209–220.

    Google Scholar 

  • Kummer B (1970) Die Beanspruchung des Armskeletts beim Hangeln. Anthrop. Anz. 32:74–82.

    Google Scholar 

  • Lanyon LE, and Smith RN (1970) Bone strain in the tibia during normal quadrupedal locomotion. Acta orthop. Scandinav. 41:238–248.

    Article  CAS  Google Scholar 

  • Lanyon LE, and Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J. Bone Jt. Surg. 58B:436–443.

    Google Scholar 

  • Lanyon LE, Hampson WGJ, Goodship AE, and Shah JS (1975) Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta orthop. Scand. 46:256–268.

    Article  PubMed  CAS  Google Scholar 

  • Nieschalk U (1991) Fortbewegung und Funktionsmorphologie von Loris tardigradus und anderen kleinen quadrupeden Halbaffen in Anpassung an unterschiedliche Habitate. Ph.D. thesis, Ruhr-Universität Bochum.

    Google Scholar 

  • Nigg BM, and Herzog W (1994) Biomechanics of the Musculo-skeletal System. Chichester: John Wiley and Sons.

    Google Scholar 

  • Preuschoft H (1985) On the quality and magnitude of mechanical stresses in the locomotor system during rapid movements. Z. Morph. Anthrop. 75:245–262.

    CAS  Google Scholar 

  • Ramm H, and Wagner W (1967) Praktische Baustatik, Teil 3, 5th ed. Stuttgart: B.G. Teubner.

    Google Scholar 

  • Richmond BG, Fleagle JG, Kappelman J, and Swisher CC III (1998) First hominoid from the Miocene of Ethiopia and the evolution of the catarrhine elbow. Am. J. Phys. Anthropol. 105:257–277.

    Article  PubMed  CAS  Google Scholar 

  • Rose MD (1988) Another look at the anthropoid elbow. J. Hum. Evol. 17:193–224.

    Article  Google Scholar 

  • Rubin CT, and Lanyon LE (1982) Limb mechanics as a function of speed and gait. J. exp. Biol. 101:187–211.

    PubMed  CAS  Google Scholar 

  • Rubin CT, and Lanyon LE (1984) Dynamic strain similarity in vertebrates: An alternative to allometric limb bone scaling. J. Theor. Biol. 107:321–327.

    Article  PubMed  CAS  Google Scholar 

  • Rubin C, Gross T, Donahue H, Guilak F, and McLeod K (1994) Physical and environmental influences on bone formation. In: CT Brighton, GE Friedlaender, and JM Lane (eds.): Bone Formation and Repair. Am. Acad. Orthopaed. Surgeons, pp. 61-78.

    Google Scholar 

  • Rybicki EF, Mills EJ, Turner AS, and Simonen FA (1977) In vivo and analytical studies of forces and moments in equine long bones. J. Biomech. 10:701–795.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt D (1994) Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J. Hum. Evol. 26:441–457.

    Article  Google Scholar 

  • Stern JT Jr., Wells JP, Vangor AK, and Fleagle JG (1977) Electromyography of some muscles of the upper limb in Ateles and Lagothrix. Yrbk. Phys. Anthropol. 20:498–507.

    Google Scholar 

  • Swartz SM, Bertram JEA, and Biewener AA (1989) Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons. Nature 342:270–272.

    Article  PubMed  CAS  Google Scholar 

  • Timoshenko S (1958) Strength of Materials. Part II. 3rd edition. New York: D. van Norstand Co.

    Google Scholar 

  • Yamasaki N, and Ishida H (1984) A biomechanical study of vertical climbing and bipedal walking in gibbons. J. Hum. Evol. 13:563–571.

    Article  Google Scholar 

  • Yoshikawa T, Satoshi M, Santiesteban AJ, Sun TC, Hafstad E, Chen J, and Burr DB (1994) The effects of muscle fatigue on bone strain. J. exp. Biol. 188:217–233.

    PubMed  CAS  Google Scholar 

  • Young DR, Howard WH, and Orne D (1977) In-vivo bone strain telemetry in monkeys (M. nemestrina). J. Biomech. Eng. 99:104–109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Demes, B. (1998). Use of Strain Gauges in the Study of Primate Locomotor Biomechanics. In: Strasser, E., Fleagle, J.G., Rosenberger, A.L., McHenry, H.M. (eds) Primate Locomotion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0092-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0092-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0094-4

  • Online ISBN: 978-1-4899-0092-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics