In Vitro Survival of Human Neoplastic Germ Cells

  • Ewa Rajpert-De Meyts
  • Heidrun Lauke
  • Niels E. Skakkebæk
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 444)


Transformed germ cells give rise to the large majority of testicular tumours, nearly 90% according to Pugh (1976). There has been a very marked increase in the incidence of germ cell tumours during the last few decades, primarily in developed countries with Caucasian population (Adami et al., 1994). Other abnormalities of male reproductive health, such as cryptorchidism, hypospadias and oligospermia, though not as well documented, appear to have risen concurrently (for review see Toppari et al., 1996). Moreover, epidemiological observations report that the incidence of testicular cancer is strongly linked to the birth cohort rather than to the age of the patients (Møller et al., 1993; Bergström et al., 1996). These phenomena suggest that differentiating testicular germ cells in the fetal or perinatal period may be especially prone to the negative influence of yet unknown environmental factors (Skakkebæk et al., 1998).


Germ Cell Sertoli Cell Germ Cell Tumour Stem Cell Factor Seminiferous Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adami, H., Bergström, R., Zatonski, W., Storm, H., Ekbom, A., Tretli, S., Teppo, L., Ziegler, H., Rahu, M., Gurevicius, R. and Stengrevics, A., 1994, Testicular cancer in nine Northern European countries, Int. J. Cancer 59: 33–38.PubMedCrossRefGoogle Scholar
  2. Andrews, P.W., 1984, Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro, Dev. Biol., 103: 285–293.PubMedCrossRefGoogle Scholar
  3. Andrews, P.W., Oosterhuis, J.W. and Damjanov, I., 1987, Cell lines from human germ cell tumours, in: Teratocarcinoma and Embryonic Stem Cells, I.J. Robertson, ed., IRL Press, Oxford.Google Scholar
  4. Bártková, J., Bártek, J., Luka, J., Vojteek, B., Staková, Z., Rejthar, A., Kovarik, J., Midgley, C. A., and Lane, D. P., 1991, p53 protein alterations in human testicular cancer including pre-invasive intratubular germ-cell neoplasia, Int. J. Cancer, 49: 196–202.PubMedCrossRefGoogle Scholar
  5. Berends, J.C., Schutte, S.E., van Dissel-Emiliani, F.M.F., de Rooij, D.G., Looijenga, L.H.J. and Oosterhuis, W., 1991, Significant improvement of the survival of seminoma cells in vitro by use of a rat Sertoli cells feeder layer and serum-free medium, J. Natl. Cancer Inst. 83: 1400–1403.PubMedCrossRefGoogle Scholar
  6. Bergström, R., Adami, HO., Möhner, M., Zatonski, W., Storm, H., Tretli, S., Teppo, L., Akre, O. and Hakulinen, T., 1996, Increase in testicular cancer incidence in six European countries: a birth cohort phenomenon, J. Natl. Cancer Inst. 88: 727–733.PubMedCrossRefGoogle Scholar
  7. Chowdury, A.K., Steinberger, A. and Steinberger, E., 1975, A quantitative study of spermatogonial population in organ culture of human testis. Andrologia 4: 297–307.Google Scholar
  8. Chresta, C. M., Masters, J. R. W., and Hickman, J. A., 1996, Hypersensitivity of human testicular tumours to etoposide-induced apoptosis is associated with functional p53 and a high bax: bcl-2 ratio. Cancer Res., 56: 1834–1841.PubMedGoogle Scholar
  9. Damjanov, I., Horvat, B. and Gibas, Z., 1993, Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT, Lab. Invest., 68: 220–232.PubMedGoogle Scholar
  10. Dolci, S., Wiliams, D.E., Ernst, M.K., Resnick, J.L., Brannan, C.I., Lock, L.F., Lyman, S.D., Boswell, H.S. and Donovan, P.J., 1991, Requirement for mast cell growth factor for primordial germ cell survival in culture, Nature 352: 809–811.PubMedCrossRefGoogle Scholar
  11. Fogh, J. and Trempe, G., 1975, New human tumor cell lines, in: Human Tumor Cells In Vitro, J. Fogh ed., Plenum Press, New York.CrossRefGoogle Scholar
  12. Giwercman, A., Andrews, P.W., Jørgensen, N, Müller, J., Gram, N. and Skakkebæk, N.E., 1993, Immunohistochemical expression of embryonal marker TRA-1-60 in carcinoma in situ and germ cell tumours of the testis, Cancer 72: 1308–1314.PubMedCrossRefGoogle Scholar
  13. Giwercman, A., Rajpert-De Meyts, E. and Skakkebæk, N.E., 1996, Carcinoma in situ of the testis: A new biological concept of urologic relevance and implications for detection and management, in: Comprehensive Textbook of Genitourinary Oncology, N.J. Vogelzang, P.T. Scardino, W.U. Shipley, D.S. Coffey, eds., Williams & Wilkins, Baltimore.Google Scholar
  14. Godin, I., Deed, R., Cooke, J., Zsebo, K., Dexter, M. and Wylie, C.C., 1991, Effects of the steel gene product on mouse primordial germ cells in culture. Nature 352: 807–809.PubMedCrossRefGoogle Scholar
  15. Heimdal, K., Lothe, R. A., Lystad, S., Holm, R., Fossa, S. D., and Borresen, A. L., 1993, No germline TP53 mutations detected in familial and bilateral testicular cancers, Genes Chromosom. Cancer, 6: 92–97.PubMedCrossRefGoogle Scholar
  16. Iemura, A., Tsai, M., Ando, A., Wershil, B.K. and Galli, S.J., 1994, The c-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis. Am. J. Pathol. 144: 321–328.PubMedGoogle Scholar
  17. Jorgensen, N., Giwercman, A., Müller, J. and Skakkebæk, N.E., 1993, Immunohistochemical markers of carcinoma in situ of the testis also expressed in normal infantile germ cells, Histopathology 22: 373–378.PubMedCrossRefGoogle Scholar
  18. Jorgensen, N., Rajpert-De Meyts, E., Graem, N., Müller, J., Giwercman, A. and Skakkebæk, N.E., 1995, Expression of immunohistochemical markers for testicular carcinoma in situ by normal human fetal germ cells, Lab. Invest. 72: 223–231.PubMedGoogle Scholar
  19. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. and Craig, R.W., 1991, Participation of p53 protein in the cellular response to DNA damage, Cancer Res. 51: 6304–6311.PubMedGoogle Scholar
  20. Lauke, H., Seidl, K., Hartmann, M. and Holstein, A.F., 1991, Carcinoma-in-situ cells in cultured human seminiferous tubules, Int. J. Androl. 14: 33–43.PubMedCrossRefGoogle Scholar
  21. Levine, A. J., 1997, P53, the cellular gatekeeper for growth and division, Cell 88: 323–331.PubMedCrossRefGoogle Scholar
  22. Lutzker, S.G. and Levine, A.J., 1996, A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nature Med. 2: 804–810.PubMedCrossRefGoogle Scholar
  23. Lutzker, S.G., 1998, P53 tumour suppressor gene and germ cell neoplasia, APMIS 106: 85–89.PubMedCrossRefGoogle Scholar
  24. Matsui, Y., Toksoz, D., Nishikawa, S., Nishikawa, S.-L, Williams, D., Zsebo, K. and Hogan, B.M.L., 1991, Effect of Steel factor and leukemia inhibitory factor on murine primordial germ cells in culture, Nature 353: 750–752.PubMedCrossRefGoogle Scholar
  25. Møller, H., 1993, Clues to the aetiology of testicular germ cell tumours from descriptive epidemiology, Eur. Urol. 23: 8–15.PubMedGoogle Scholar
  26. Olie, R.A., Looijenga, L.H.J., Dekker, M.C., de Jong, F.H., De Rooy, D.G. and Oosterhuis, J.W., 1995, Heterogeneity in the in vitro survival and proliferation of human seminoma cells, Br. J. Cancer, 71: 13–17.PubMedCrossRefGoogle Scholar
  27. Olie, R.A., Boersma, A.W.M., Dekker, M.C., Nooter, K., Looijenga, L.H.J. and Oosterhuis, J.W., 1996, Apoptosis of human seminoma cells upon disruption of their microenvironment, Br. J. Cancer, 73: 1031–1036.PubMedCrossRefGoogle Scholar
  28. Peng, H.-Q., Hogg, D., Malkin, D., Bailey, D., Gallie, B.L., Bulbul, M., Jewett, M., Buchanan, J. and Goss, P.E., 1993, Mutations of the p53 gene do not occur in testis cancer, Cancer Res. 53: 3574–3578.PubMedGoogle Scholar
  29. Pera, M.F., Cooper, S., Mills, J. and Parrington, J.N., 1989, Isolation and characterisation of a multipotent clone of human embryonal carcinoma cells, Differentiation 42: 10–23.PubMedCrossRefGoogle Scholar
  30. Pesce, M., Farrace, M.G., Piacentini, M., Dolci, S. and De Felici, M., 1993, Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by supressing programmed cell death (apoptosis), Development 4: 1089–1094.Google Scholar
  31. Pugh, R.C. (ed.), 1976, Pathology of the Testis, Blackwell, Oxford.Google Scholar
  32. Rajpert-De Meyts, E. and Skakkebæk, N.E., 1994, Expression of the c-kit protein product in carcinoma in situ and invasive germ cell tumours, Int. J. Androl. 17: 85–92.PubMedCrossRefGoogle Scholar
  33. Rajpert-De Meyts, E., Jørgensen, N., Brandum-Nielsen, K., Müller, J. and Skakkebæk, N.E., 1998, Developmental arrest of germ cells in the pathogenesis of germ cell neoplasia, APMIS, 106: 198–206.PubMedCrossRefGoogle Scholar
  34. Resnick, J.L., Bixler, L.S., Cheng, L. and Donovan, P.J., 1992, Long-term proliferation of mouse primoridal germ cells in culture, Nature 359: 550–551.PubMedCrossRefGoogle Scholar
  35. Seidl, K. And Holstein, A.-F., 1990, Organ culture of seminiferous tubules: A useful tool to study the role of nerve growth factor in the testis, Cell Tissue Res. 261: 539–549.PubMedCrossRefGoogle Scholar
  36. Skakkebæk, N.E., Berthelsen, J.G., Giwercman, A. and Müller, J., 1987, Carcinoma-in-situ of the testis: Possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma, Int. J. Androl. 10: 19–28.PubMedCrossRefGoogle Scholar
  37. Skakkebæk, N.E., Rajpert-De Meyts, E., Jorgensen, N., Carlsen, E., Petersen, P.M., Giwercman, A., Andersen, A.G., Jensen, T.K., Andersson, A.-M. and Müller, J., 1998, Germ cell cancer and disorders of spermatogenesis: An environmental connection? APMIS 106: 3–12.PubMedCrossRefGoogle Scholar
  38. Steinberger, E., Steinberger, A. and Perloff, W.H., 1964, Initiation of spermatogenesis in vitro, Endocrinology 74: 788–792.PubMedCrossRefGoogle Scholar
  39. Strohmeyer, T., Peter, S., Hartmann, M., Munemitsu, S., Ackermann, R., Ullrich, A. and Slamon, D., 1991, Expression of the hst-1 and c-kit protooncogenes in human testicular germ cell tumours, Cancer Res. 51: 1811–1816.PubMedGoogle Scholar
  40. Tajima, Y., Onoue, H., Kitamura, Y. and Nishimune, Y., 1991, Biologically active kit ligand growth factor is produced by mouse Sertoli cells and is defective in SI mutant mice, Development 113: 1031–1035.PubMedGoogle Scholar
  41. Thompson, S., Stern, P.L., Webb, M., Walsh, F.S., Engstrom, W., Evans, E.P., Shi, W.K., Hopkins, B. and Graham, C.F., 1984, Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J. Cell Sci. 72: 37–64.PubMedGoogle Scholar
  42. Toppari, J., Larsen, J.C., Christiansen, P., Giwercman, A., Grandjean, P., Guillette, L.J.J., Jégou, B., Jensen, T.K., Jouannet, P., Keiding, N., Leffers, H., McLachlan, J.A., Meyer, O., Müller, J., Rajpert-De Meyts, E., Scheike, T., Sharpe, R., Sumpter, J. and Skakkebæk, N.E., 1996, Male reproductive health and environmental xenoestrogens, Environ. Health Perspect. 104 (Suppl. 4): 741–803.PubMedGoogle Scholar
  43. Tres, L.L. and Kierszenbaum, A.L., 1983, Viability of rat spermatogenic cells in vitro is facilitated by their coculture in with Sertoli cells in serum-free hormone-supplemented medium, Proc. Natl. Acad Sci. U.S.A. 80: 3377–3381.PubMedCrossRefGoogle Scholar
  44. Zsebo, K.M., Smith, K.A., Hartley, C.A., Greenblatt, M., Cooke, K., Rich, W. and McNiece, I.K., 1992, Radioprotection of mice by recombinant rat stem cell factor, Proc. Natl. Acad. Sci. U.S.A. 89: 9464–9468.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ewa Rajpert-De Meyts
    • 1
  • Heidrun Lauke
    • 2
  • Niels E. Skakkebæk
    • 1
  1. 1.Dept. of Growth & ReproductionCopenhagen University Hospital (Rigshospitalet)CopenhagenDenmark
  2. 2.Dept. of Microscopic Anatomy, Institute of AnatomyHamburg University HospitalHamburgGermany

Personalised recommendations