Mechanical Effects of Radiation Pressure Quantum Fluctuations
Chapter
Abstract
Lorentz electron theory [1] was an early unification of fields and particles, in that case electromagnetic fields and charged particles, in a common and universal description. This frame played a determinant role in a consistent development of classical field theory and relativistic mechanics [2]. This close connection was deeply perturbed by the advent of quantum formalisms, which ultimately emphasize the primary role of quantum fields. Within the framework of quantum electrodynamics, mechanical effects on charged particles, although obtainable in principle, are usually derived with difficulties [3].
Keywords
Radiation Pressure Quantum Fluctuation Casimir Force Force Fluctuation Spectral Energy Density
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]H.A. Lorentz. The Theory of Electrons, Leipzig (1915) [reprinted by Dover, New York (1952)].Google Scholar
- [2]A. Einstein, Ann. Physik 18:639 (1905).CrossRefGoogle Scholar
- A. Einstein, Ann. Physik 20:627 (1906).MATHCrossRefGoogle Scholar
- A. Einstein, Jahrb. Radioakt Elektron. 4:411 (1907).Google Scholar
- A. Einstein, Jahrb. Radioakt Elektron. 5:98 (1908).Google Scholar
- [H.M. Schwartz, Am. J. Phys. 45:512, 811, 899 (1977)].CrossRefGoogle Scholar
- [3]H. Groch and E. Kazes, in: Foundations of Radiation Theory and QED, A.O. Barut, ed., Plenum Press, New York (1980).Google Scholar
- [4]N. Bohr and L. Rosenfeld, Phys. Rev. 78:794 (1950).MATHCrossRefGoogle Scholar
- [5]V.B. Braginsky and F.Ya. Khalili. Quantum Measurement, University Press, Cambridge (1992).MATHCrossRefGoogle Scholar
- M.T. Jaekel and S. Reynaud, Europhys. Lett. 13:301 (1990).CrossRefGoogle Scholar
- M.T. Jaekel and S. Reynaud, Phys. Lett. A 185:143 (1994).Google Scholar
- [6]H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51:793 (1948).MATHGoogle Scholar
- G. Plunien, B. Müller and W. Greiner, Phys. Rep. 134:87 (1986).MathSciNetCrossRefGoogle Scholar
- [7]A. Einstein, Ann. Physik 17:549 (1905).MATHCrossRefGoogle Scholar
- A. Einstein, Phys. Z. 10:185 (1909).MATHGoogle Scholar
- A. Einstein, Phys. Z. 18:121 (1917).Google Scholar
- [8]P.S. Wesson, ApJ 378:466 (1991).CrossRefGoogle Scholar
- [9]L.S. Brown and G.J. Maclay, Phys. Rev. 184:1272 (1969).CrossRefGoogle Scholar
- [10]M.T. Jaekel and S. Reynaud, J. Phys. I France 1:1395 (1991).CrossRefGoogle Scholar
- [11]G. Barton, J. Phys. A: Math. Gen. 24:991, 5533 (1991); in: Cavity Quantum Electrodynamics (Supplement: Advances in Atomic, Molecular and Optical Physics, P. Berman, ed., Academic Press (1994).MathSciNetCrossRefGoogle Scholar
- [12]C. Eberlein, J. Phys. A: Math. Gen. 25:3015, 3039 (1992).MathSciNetMATHCrossRefGoogle Scholar
- [13]M.T. Jaekel and S. Reynaud, Quantum Opt. 4:39 (1992).MathSciNetCrossRefGoogle Scholar
- [14]R. Kubo, Rep. Prog. Phys. 29:255 (1966).CrossRefGoogle Scholar
- L.D. Landau and E.M. Lifschitz. Cours de Physique Théorique, Physique Statistique, première partie, Mir, Moscou, (1984).Google Scholar
- [15]H.B. Callen and T.A. Welton, Phys. Rev. 83:34 (1951).MathSciNetMATHCrossRefGoogle Scholar
- [16]B.S. de Witt, Phys. Rep. 19:295 (1975).CrossRefGoogle Scholar
- N.D. Birell and P.C.W., Davies. Quantum Fields in Curved Space, University Press, Cambridge (1982).CrossRefGoogle Scholar
- S.A. Fulling. Aspects of Quantum Field Theory in Curved Spacetime, University Press, Cambridge (1989).CrossRefGoogle Scholar
- [17]S.A. Fulling and P.C.W. Davies, Proc. R. Soc. A 348:393 (1976).MathSciNetGoogle Scholar
- [18]L.H. Ford and A. Vilenkin, Phys. Rev. D 25:2569 (1982).MathSciNetGoogle Scholar
- [19]P.A. Maia Neto, J. Phys. A Math. Gen. 27:2167 (1994).CrossRefGoogle Scholar
- [20]F. Rohrlich. Classical Charged Particles, Addison-Wesley, Reading (1965).MATHGoogle Scholar
- [21]M.T. Jaekel and S. Reynaud, Phys. Lett. A 167:227 (1992).Google Scholar
- [22]J. Meixner, in: Statistical Mechanics of Equilibrium and Non-Equilibrium, J. Meixner, ed., North-Holland, Amsterdam (1965).Google Scholar
- [23]H. Dekker, Phys. Lett. A 107:255 (1985).Google Scholar
- H. Dekker, Physica 133 A:1 (1985).MathSciNetGoogle Scholar
- [24]M.T. Jaekel and S. Reynaud, J. Phys.I France 3:1 (1993).CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1997