Quantum Fluctuations and Inertia

  • Marc-Thierry Jaekel
  • Serge Reynaud
Part of the NATO ASI Series book series (NSSB, volume 358)


Fundamental problems are raised by the mechanical effects associated with radiation pressure fluctuations in vacuum. The instability of motions when radiation reaction is taken into account, and the existence of “runaway solutions” [1], can be avoided for mirrors by recalling that they are actually transparent to high frequencies of the field [2]. However, partially transmitting mirrors, and cavities, introduce scattering time delays which result in a temporary storage of part of the scattered vacuum fluctuations [3]. In particular, the energy related to Casimir forces [4] identifies with the energy of field fluctuations stored in the cavity [3]. This revives the questions of the contribution of vacuum fluctuations to inertia and gravitation [5], and of its consistency with the general principles of equivalence and of inertia of energy.


Radiation Pressure Inertial Mass Casimir Force Mass Correction Field Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    F. Rohrlich. Classical Charged Particles, Addison-Wesley, Reading (1965).zbMATHGoogle Scholar
  2. [2]
    M.T. Jaekel and S. Reynaud, Phys. Lett. A 167:227 (1992).Google Scholar
  3. [3]
    M.T. Jaekel and S. Reynaud, J. Phys. I France 1:1395 (1991).CrossRefGoogle Scholar
  4. [4]
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51:793 (1948).zbMATHGoogle Scholar
  5. G. Plunien, B. Müller and W. Greiner, Phys. Rep. 134:87 (1986).MathSciNetCrossRefGoogle Scholar
  6. [5]
    W. Nernst, Verh. Deutsch. Phys. Ges. 18:83 (1916).Google Scholar
  7. [6]
    C.P. Enz, in: Physical Reality and Mathematical Description, C.P. Enz and J. Mehra, eds., Reidel, Dordecht (1974).Google Scholar
  8. [7]
    P.S. Wesson, ApJ 378:466 (1991).CrossRefGoogle Scholar
  9. [8]
    N.D. Birell and P.C.W. Davies. Quantum Fields in Curved Space, University Press, Cambridge (1982).CrossRefGoogle Scholar
  10. S.A. Fulling. Aspects of Quantum Field Theory in Curved Spacetime, University Press, Cambridge (1989).CrossRefGoogle Scholar
  11. [9]
    E.P. Wigner, Phys. Rev. 98:145 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [10]
    E.L. Bolda, R.Y. Chiao, G.C. Garrison, Phys. Rev. A 48:3890 (1993).Google Scholar
  13. [11]
    M.T. Jaekel and S. Reynaud, J. Phys. I France 2:149 (1992).CrossRefGoogle Scholar
  14. [12]
    A. Einstein, Phys. Z. 18:121 (1917).Google Scholar
  15. [13]
    M.T. Jaekel and S. Reynaud, Quantum Opt. 4:39 (1992).MathSciNetCrossRefGoogle Scholar
  16. [14]
    G.T. Moore, J. Math. Phys. 11:2679 (1970).CrossRefGoogle Scholar
  17. [15]
    R. Kubo, Rep. Prog. Phys. 29:255 (1966).CrossRefGoogle Scholar
  18. L.D. Landau and E.M. Lifschitz. Cours de Physique Théorique, Physique Statistique, première partie, Mir, Moscou (1984).Google Scholar
  19. [16]
    M.T. Jaekel and S. Reynaud, J. Phys. I France 3:1093 (1993).CrossRefGoogle Scholar
  20. [17]
    A. Einstein. The Meaning of Relativity, University Press, Princeton (1946).Google Scholar
  21. [18]
    A.D. Sakharov, Doklady Akad. Nauk SSSR 177:70 (1967).Google Scholar
  22. A.D. Sakharov, [Sov. Phys. Doklady 12:1040 (1968)].Google Scholar
  23. [19]
    A. Einstein, Jahrb. Radioakt. Elektron. 4:411 (1907).Google Scholar
  24. A. Einstein, Jahrb. Radioakt. Elektron. 5:98 (1908).Google Scholar
  25. [H.M. Schwartz, Am. J. Phys. 45:512, 811, 899 (1977)].CrossRefGoogle Scholar
  26. [20]
    M.T. Jaekel and S. Reynaud, Phys. Lett. A 180:9 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Marc-Thierry Jaekel
    • 1
  • Serge Reynaud
    • 2
  1. 1.Laboratoire de Physique Théorique de l’Ecole Normale Supérieure (CNRS)Paris Cedex 05France
  2. 2.Laboratoire Kastler Brossel (UPMC-ENS-CNRS)Paris Cedex 05France

Personalised recommendations