Skip to main content

Localization of Electromagnetic Waves in 2D Random Media

  • Chapter
Electron Theory and Quantum Electrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 358))

  • 323 Accesses

Abstract

Recently random dielectric structures with typical length scale matching the wavelength of electromagnetic radiation in the microwave and optical part of the spectrum have attracted much attention. Propagation of electromagnetic waves in these structures resembles the properties of electrons in disordered semiconductors. Therefore many ideas concerning transport properties of light and microwaves in such media exploit the theoretical methods and concepts of solid-state physics that were developed over many decades. One of them is the concept of electron localization in noncrystalline systems such as amorphous semiconductors or disordered insulators. As shown by Anderson1, in a sufficiently disordered infinite material an entire band of electronic states can be spatially localized. Thus for any energy from this band the stationary solution of the Schrödinger equation is localized for almost any realization of the random potential. Prior to the work due to Anderson, it was believed that electronic states in infinite media are either extended, by analogy with the Bloch picture for crystalline solids, or are trapped around isolated spatial regions such as surfaces and impurities2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).

    Article  Google Scholar 

  2. T. V. Ramakrishnan, Electron localization, In: Ref.[32], pp. 213-304.

    Google Scholar 

  3. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42, 673 (1979).

    Article  Google Scholar 

  4. B. Souillard, Waves and electrons in inhomogeneous media, In: Ref.[32], pp. 305-382.

    Google Scholar 

  5. M. Kaveh, What to expect from similarities between the Schrödinger and Maxwell equations, In: Ref.[9], pp. 21-34.

    Google Scholar 

  6. S. John, Electromagnetic absorption in a disordered medium near a photon mobility edge, Phys. Rev. Lett. 53, 2169 (1984).

    Article  Google Scholar 

  7. P. W. Anderson, The question of classical localization. A theory of white paint? Phil. Mag. B 52, 505 (1985).

    Article  Google Scholar 

  8. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987).

    Article  Google Scholar 

  9. W. van Haeringen and D. Lenstra, editors, Analogies in Optics and Micro Electronics (Kluwer, Dordrecht, 1990).

    Google Scholar 

  10. C. M. Soukoulis, editor, Photonic Band Gaps and Localization, New York, 1993. NATO ASI Series, Plenum.

    Google Scholar 

  11. E. Akkermans, P. E. Wolf, and R. Maynard, Coherent backscattering of light by disordered media: Analysis of the peak line shape, Phys. Rev. Lett. 56, 1471 (1986).

    Article  Google Scholar 

  12. M. J. Stephen and G. Cwillich, Rayleigh scattering and weak localization: Effects of polarization, Phys. Rev. B 34, 7564 (1986).

    Article  Google Scholar 

  13. F. C. MacKintosh and S. John, Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media, Phys. Rev. B 37, 1884 (1988).

    Article  Google Scholar 

  14. Y. Kuga and A. Ishimaru, Retroreflectance from a dense distribution of spherical particles, J. Opt. Soc. Am. A 1, 831 (1984).

    Article  Google Scholar 

  15. M. P. van Albada and E. Lagendijk, Observation of weak localization of light in a random medium, Phys. Rev. Lett. 55, 2692 (1985).

    Article  Google Scholar 

  16. P.-E. Wolf and G. Maret, Weak localization and coherent backscattering of photons in disordered media, Phys. Rev. Lett. 55, 2696 (1985).

    Article  Google Scholar 

  17. M. P. van Albada, A. Lagendijk, and M. B. van der Mark, Towards observation of Anderson localization of light, In: Ref.[9], pp. 85-103.

    Google Scholar 

  18. G. H. Watson Jr., P. A. Fleury, and S. L. McCall, Search for photon localization in the time domain, Phys. Rev. Lett. 58, 945 (1987).

    Article  Google Scholar 

  19. A. Z. Genack, Optical transmition in disordered media, Phys. Rev. Lett. 58, 2043 (1987).

    Article  Google Scholar 

  20. J. M. Drake and A. Z. Genack, Observation of nonclassical optical diffusion, Phys. Rev. Lett. 63, 259 (1989).

    Article  Google Scholar 

  21. A. Z. Genack and N. Garcia, Observation of photon localization in a three-dimensional disordered system, Phys. Rev. Lett. 66, 2064 (1991).

    Article  Google Scholar 

  22. R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, Microwave localization by two-dimensional random scattering, Nature 354, 53 (1991).

    Article  Google Scholar 

  23. S. John, Localization of light, Physics Today 44, 32 (May 1991).

    Article  Google Scholar 

  24. Barbara Goss Levi, Light travels more slowly through strongly scattering materials, Physics Today 44, 17 (June 1991).

    Google Scholar 

  25. J. Kroha, C. M. Sokoulis, and P. Wölfle, Localization of classical waves in a random medium: A self-consistent theory, Phys. Rev. B 47, 11093 (1993).

    Article  Google Scholar 

  26. B. A. van Tiggelen and E. Kogan, Analogies between light and electrons: Density of states and Friedel’s identity, Phys. Rev. A 49, 708 (1994).

    Article  Google Scholar 

  27. M. P. van Albada, B. A. van Tiggelen, A. Lagendijk, and A. Tip, Speed of propagation of classical waves in strongly scattering media, Phys. Rev. Lett. 66, 3132 (1991).

    Article  Google Scholar 

  28. G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).

    Google Scholar 

  29. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford-London, 1965).

    Google Scholar 

  30. M. Rusek, A. Orlowski, and J. Mostowski, Localization of light in three-dimensional random dielectric media, Phys. Rev. E 53, 4122 (1996).

    Article  Google Scholar 

  31. M. Rusek and A. Orlowski, Analytical approach to localization of electromagnetic waves in two-dimensional random media, Phys. Rev. E 51, R2763 (1995).

    Article  Google Scholar 

  32. J. Souletie, J. Vannimenus, and R. Stora, editors, Chance and Matter (North-Holland, Amsterdam, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orłowski, A., Rusek, M. (1997). Localization of Electromagnetic Waves in 2D Random Media. In: Dowling, J.P. (eds) Electron Theory and Quantum Electrodynamics. NATO ASI Series, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0081-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0081-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0083-8

  • Online ISBN: 978-1-4899-0081-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics