Field Theory of the Spinning Electron: I — Internal Motions

  • Giovanni Salesi
  • Erasmo Recami
Part of the NATO ASI Series book series (NSSB, volume 358)


This paper is dedicated to the memory of Asim O. Barut, who so much contributed to clarifying very many fundamental issues of physics, and whose work constitutes a starting point of these articles.

We present here a field theory of the spinning electron, by writing down a new equation for the 4-velocity field v μ (different from that of Dirac theory), which allows a classically intelligible description of the electron. Moreover, we make explicit the noticeable kinematical properties of such velocity field (which also result different from the ordinary ones). At last, we analyze the internal zitterbewegung (zbw) motions, for both time-like and light-like speeds. We adopt in this paper the ordinary tensorial language. Our starting point is the Barut-Zanghi classical theory for the relativistic electron, which related spin with zbw.


Motion Equation Relativistic Electron Internal Motion Uniform Motion Dirac Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.H. Compton: Phys. Rev. 14 (1919) 20, 247.CrossRefGoogle Scholar
  2. E. Schrödinger: Sitzunger. Preuss. Akad. Wiss. Phys. Math. Kl. 24 (1930) 418Google Scholar
  3. P.A.M. Dirac: The Principles of Quantum Mechanics, 4th edition (Claredon; Oxford, 1958), p.262.zbMATHGoogle Scholar
  4. J. Frenkel: Z. Phys. 37 (1926) 243.zbMATHCrossRefGoogle Scholar
  5. M. Mathisson: Acta Phys. Pol. 6 (1937) 163.Google Scholar
  6. H. Honl and A. Papapetrou: Z. Phys. 112 (1939) 512.CrossRefGoogle Scholar
  7. H. Honl and A. Papapetrou: Z. Phys. 116 (1940) 153.CrossRefGoogle Scholar
  8. M.J. Bhabha and H.C. Corben: Proc. Roy. Soc. (London) A178 (1941) 273.MathSciNetGoogle Scholar
  9. K. Huang: Am. J. Phys. 20 (1952) 479.zbMATHCrossRefGoogle Scholar
  10. H. Hönl: Ergeb. Exacten Naturwiss. 26 (1952) 29.Google Scholar
  11. A. Proca: J. Phys. Radium 15 (1954) 5.MathSciNetCrossRefGoogle Scholar
  12. M. Bunge: Nuovo Cimento 1 (1955) 977.CrossRefGoogle Scholar
  13. F. Gursey: Nuovo Cimento 5 (1957) 784.MathSciNetCrossRefGoogle Scholar
  14. W.H. Bostick: “Hydromagnetic model of an elementary particle”, in Gravity Res. Found. Essay Contest (1958 and 1961), and refs. therein; H.C. Corben: Phys. Rev. 121 (1961) 1833.Google Scholar
  15. T.F. Jordan and M. Mukunda: Phys. Rev. 132 (1963) 1842.MathSciNetCrossRefGoogle Scholar
  16. B. Liebowitz: Nuovo Cimento A63 (1969) 1235.Google Scholar
  17. H. Jehle: Phys. Rev. D3 (1971) 306.Google Scholar
  18. F. Riewe: Lett. Nuovo Cim. 1 (1971) 807.CrossRefGoogle Scholar
  19. G.A. Perkins: Found. Phys. 6 (1976) 237.CrossRefGoogle Scholar
  20. D. Gutkowski, M. Moles and J.P. Vigier: Nuovo Cim. B39 (1977) 193.CrossRefGoogle Scholar
  21. A.O. Barut: Z. Naturforsch. A33 (1978) 993.Google Scholar
  22. J.A. Lock: Am. J. Phys. 47 (1979) 797.MathSciNetCrossRefGoogle Scholar
  23. M. Pauri: in Lecture Notes in Physics, vol.135 (Springer; Berlin, 1980), p.615.Google Scholar
  24. J. Maddox: “Where Zitterbewegung may lead”, Nature 325 (1987) 306.Google Scholar
  25. M. H. McGregor: The enigmatic electron (Kluwer; Dordrecht, 1992).Google Scholar
  26. W.A. Rodrigues, J. Vaz and E. Recami: Found. Phys. 23 (1993) 459.MathSciNetGoogle Scholar
  27. [2]
    A.O. Barut and N. Zanghi: Phys. Rev. Lett. 52 (1984) 2009.MathSciNetCrossRefGoogle Scholar
  28. See also A.O. Barut and A.J. Bracken: Phys. Rev. D23 (1981) 2454.MathSciNetGoogle Scholar
  29. See also A.O. Barut and A.J. Bracken: Phys. Rev. D24 (1981) 3333.MathSciNetGoogle Scholar
  30. A.O. Barut and M. Pavsic: Class. Quantum Grav. 4 (1987) L131.MathSciNetCrossRefGoogle Scholar
  31. A.O. Barut: Phys. Lett. B237 (1990) 436.Google Scholar
  32. [3]
    E. Recami and G. Salesi: “Field theory of the electron: Spin and zitterbewegung”, in Particles, Gravity and Space-Time, ed. by P.I. Pronin and G.A. Sardanashvily (World Scient.; Singapore, 1996), pp.345–368.CrossRefGoogle Scholar
  33. [4]
    M. Pavsic, E. Recami, W.A. Rodrigues, G.D. Maccarrone, F. Raciti and G. Salesi: Phys. Lett. B318 (1993) 481.MathSciNetGoogle Scholar
  34. [5]
    M. Pavsic: Phys. Lett. B205 (1988) 231.MathSciNetGoogle Scholar
  35. M. Pavsic: Phys. Lett. B221 (1989) 264.MathSciNetGoogle Scholar
  36. M. Pavsic: Class. Quant. Grav. 7 (1990) L18–7.MathSciNetCrossRefGoogle Scholar
  37. [6]
    A.O. Barut and M. Pavsic: Phys. Lett. B216 (1989) 297.MathSciNetGoogle Scholar
  38. F.A. Ikemori: Phys. Lett. B199 (1987) 239.MathSciNetGoogle Scholar
  39. See also D. Hestenes: Found. Phys. 20 (1990) 1213.MathSciNetCrossRefGoogle Scholar
  40. S. Gull, A. Lasenby and C. Doran: “Electron paths, tunneling and diffraction in the space-time algebra”, to appear in Found. Phys. (1993).Google Scholar
  41. D. Hestenes and A. Weingartshofer (eds.): The electron (Kluwer; Dordrecht, 1971).Google Scholar
  42. in particular the contributions by H. Krüger, by R. Boudet, and by S. Gull; A. Campolattaro: Int. J. Theor. Phys. 29 (1990) 141.MathSciNetzbMATHCrossRefGoogle Scholar
  43. D. Hestenes: Found. Phys. 15 (1985) 63.MathSciNetCrossRefGoogle Scholar
  44. [7]
    W.A. Rodrigues Jr., J. Vaz, E. Recami and G. Salesi: Phys. Lett. B318 (1993) 623.MathSciNetGoogle Scholar
  45. [8]
    For the physical interpretation of the negative frequency waves, without any recourse to a “Dirac sea”, see e.g. E. Recami: Found. Phys. 8 (1978) 329.CrossRefGoogle Scholar
  46. E. Recami and W.A. Rodrigues: Found. Phys. 12 (1982) 709.MathSciNetCrossRefGoogle Scholar
  47. E. Recami and W.A. Rodrigues: Found. Phys. 13 (1983) 533.MathSciNetCrossRefGoogle Scholar
  48. M. Pavsic and E. Recami: Lett. Nuovo Cim. 34 (1982) 357.MathSciNetCrossRefGoogle Scholar
  49. See also R. Mignani and E. Recami: Lett. Nuovo Cim. 18 (1977) 5.CrossRefGoogle Scholar
  50. A. Garuccio et al: Lett. Nuovo Cim. 27 (1980) 60.MathSciNetCrossRefGoogle Scholar
  51. [9]
    P. Lounesto: “Clifford algebras, relativity and quantum mechanics”, in Gravitation: The Space-Time Structure — Proceedings of Silarg-VIII, ed. by W.A. Rodrigues et al. (World Scient.; Singapore, 1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Giovanni Salesi
    • 1
  • Erasmo Recami
    • 2
    • 3
    • 4
  1. 1.Dipart. di FisicaUniversità Statale di CataniaCataniaItaly
  2. 2.Facoltà di IngegneriaUniversità Statale di BergamoDalmine (BG)Italy
  3. 3.Sezione di MilanoINFNMilanItaly
  4. 4.Dept. of Applied Math.State University at CampinasCampinasBrazil

Personalised recommendations