The Purely Electromagnetic Electron Re-visited

  • Tom Waite
  • Asim O. Barut
  • José R. Zeni
Part of the NATO ASI Series book series (NSSB, volume 358)


Shortly after Thompson established the existence of the electron as a particle with charge (−e) and mass (m0), Abraham1 in 1903 and Lorentz2 in 1904 proposed that the electron was a Purely Electromagnetic Particle (PEP). Their electron model, when at rest, was simply a uniform sphere of negative charge. They each noted that, when such a sphere of charge moves, it generates a magnetic field such that the Poynting vector or inertial momentum density is not zero. Therefore, if the sphere of charge is accelerated, there is a time rate of change of inertial momentum in its self fields. By Newton’s Law, this time rate of change in momentum can be generated only by imposing forces (external fields) on the sphere of charge.


Field Line Pairwise Disjoint Spherical Shell Magnetic Field Line Lorentz Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abraham, Ann. Phys., Lpz. 10, 105, (1903).zbMATHGoogle Scholar
  2. 2.
    H.A. Lorentz, Proc. Acad. Sci. Amst. 6, 809, (1904).Google Scholar
  3. 3.
    H. Poincaré, C.R. Acad. Sei., Paris, 140, 1504 (1905).zbMATHGoogle Scholar
  4. R.C. Circ. mat. Palermo, 21 129 (1906).CrossRefGoogle Scholar
  5. 4.
    P. Ehrenfest, Ann. Phys., Lpz. 23, 204, (1907).CrossRefzbMATHGoogle Scholar
  6. 5.
    A. Einstein, Sitzungsberichte der Preussischen Akad. d. Wissenschaften (1919), as translated in The Principle of Relativity, H. A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, Dover, NY (1952) p. 192.Google Scholar
  7. 6.
    W. Pauli, Relativitätstheorie, Encyklopädie der mathematischem Wissenschaften, 19 B. G. Teubner, Lupzig (1921), as translated in Theory of Relativity, Dover, NY, (1958) p. 184.Google Scholar
  8. 7.
    T. Waite, to be published in Physics Essays, March (1995).Google Scholar
  9. 8.
    G.D. Jackson, Classical Electrodynamics, John Wiley, NY (1975), p. 238.Google Scholar
  10. 9.
    S. Chandrasekhar, Proc. Nat Acad. Sc, 42, 1 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 10.
    S. Chandrasekhar and P.C. Kendall, Astrophys., J., 126, 2544 (1296).MathSciNetGoogle Scholar
  12. 11.
    For a recent review and bibliography, see H. Zaghloul and O. Barajas, Am. J. Phys., 58, 783 (1990).CrossRefGoogle Scholar
  13. 12.
    E. Schroedinger, Quantization as a problem in proper values IV, Ann. d. Physik, 4-81 (1926) as translated in Collected Papers on Wave Mechanics, Chelsea Publishing, New York, NY (1982) p. 123.Google Scholar
  14. 13.
    A. Sommerfeld, The Mechanics of Deformable Bodies, Academic Press NY (1950), p. 132.Google Scholar
  15. 14.
    V. Guillemin and A. Pollack, Differential Topology, p. 146, Prentice Hall Inc., Englewood Cliffs, N.J. (1974).zbMATHGoogle Scholar
  16. 15.
    H. Dehmelt, Rev. Mod. Phys. 62, 525, (1990).CrossRefGoogle Scholar
  17. 16.
    Michael Spivak, A Comprehensive Introduction to Differential Geometry, vol. 5, p. 57, Publish or Perish, Inc., Berkeley (1979).Google Scholar
  18. 17.
    W. Heinsenberg, The Physical Principles of Quantum Theory, English translation by University of Chicago Press (1930) reprinted by Dover Publishing Co., NY, NY, (1949).Google Scholar
  19. 18.
    A. Einstein as quoted in J.A. Wheeler and W.H. Zurek, editors, Quantum Theory and Measurement, Princeton University Press, Princeton, NJ (1983) p. 58.Google Scholar
  20. 19.
    A.O. Barut, Found of Phys. Lett, 1, 47 (1988).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Tom Waite
    • 1
  • Asim O. Barut
    • 2
  • José R. Zeni
    • 3
  1. 1.SylmarUSA
  2. 2.Dept. of PhysicsColorado UniversityBoulderUSA
  3. 3.Depto. Ciencas NaturaiFunreiSao Joao Del ReiBrazil

Personalised recommendations