Phase Distributions and Quasidistributions of Amplitude-Squared Squeezed States

  • Alexei Chizhov
  • Bolat Murzakhmetov
Part of the NATO ASI Series book series (NSSB, volume 358)


In recent years, special attention in quantum optics has been paid to a class of optical field states that are called squeezed states (for a recent review see, for example, special issues of two optical journals [1] devoted to this subject). These states show reduced fluctuations in one quadrature component of the electromagnetic field and enhanced fluctuations in the other.


Phase Distribution Wigner Function Quadrature Component Quasi Probability Distribution Minimum Uncertainty State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Special issues: J. Opt. Soc. Am. B4, No. 10 (1987).Google Scholar
  2. J. Mod. Opt. 34, No. 6/7 (1987).Google Scholar
  3. [2]
    C. K. Hong and L. Mandel, Phys. Rev. Lett. 54, 323 (1985).CrossRefGoogle Scholar
  4. C. K. Hong and L. Mandel, Phys. Rev. A 32, 974 (1985).CrossRefGoogle Scholar
  5. [3]
    S. L. Braunstein and R. I. McLachlan, Phys. Rev. A 35, 1659 (1987).CrossRefGoogle Scholar
  6. [4]
    M. Hillery, Opt. Commun. 62, 135 (1987).CrossRefGoogle Scholar
  7. [5]
    M. Hillery, Phys. Rev. A 36, 3796 (1987).CrossRefGoogle Scholar
  8. [6]
    D. Yu and M. Hillery, Quantum Optics 6, 37 (1994).CrossRefGoogle Scholar
  9. [7]
    P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).CrossRefGoogle Scholar
  10. S. M. Barnett and D. T. Pegg, J. Phys. A 19, 3849 (1986).MathSciNetCrossRefGoogle Scholar
  11. [8]
    D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988).CrossRefGoogle Scholar
  12. [9]
    S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989).CrossRefGoogle Scholar
  13. [10]
    D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).CrossRefGoogle Scholar
  14. [11]
    A. Bandilla and H. Paul, Ann. Phys. (Leipzig) 23, 323 (1969).Google Scholar
  15. [12]
    S. L. Braunstein and C. M. Caves, Phys. Rev. A 42, 4115 (1990).CrossRefGoogle Scholar
  16. [13]
    W. Schleich, R. J. Horowicz and S. Varro, Phys. Rev. A 40, 7405 (1989).CrossRefGoogle Scholar
  17. [14]
    W. Schleich, A. Bandilla and H. Paul, Phys. Rev. A 45, 6652 (1992).CrossRefGoogle Scholar
  18. [15]
    R. Tanas and Ts. Gantsog, Phys. Rev. A 45, 5031 (1992).MathSciNetCrossRefGoogle Scholar
  19. [16]
    R. Tanas, B. K. Murzakhmetov, Ts. Gantsog and A. V. Chizhov, Quantum Optics 4, 1 (1992).MathSciNetCrossRefGoogle Scholar
  20. [17]
    A. V. Chizhov, Ts. Gantsog and B. K. Murzakhmetov, Quantum Optics 5, 85 (1993).CrossRefGoogle Scholar
  21. [18]
    A. V. Chizhov and B. K. Murzakhmetov, Physics Letters A 176, 33 (1993).CrossRefGoogle Scholar
  22. [19]
    K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857; 1883 (1969).CrossRefGoogle Scholar
  23. [20]
    B. M. Garraway and P. L. Knight, Phys. Rev. A 46, R5346 (1992).CrossRefGoogle Scholar
  24. B. M. Garraway and P. L. Knight, Physica Scripta T48, 66 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Alexei Chizhov
    • 1
  • Bolat Murzakhmetov
    • 1
  1. 1.Bogolubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow RegionRussia

Personalised recommendations