Electron Theory and Quantum Electrodynamics pp 141-148 | Cite as
Phase Distributions and Quasidistributions of Amplitude-Squared Squeezed States
Chapter
Abstract
In recent years, special attention in quantum optics has been paid to a class of optical field states that are called squeezed states (for a recent review see, for example, special issues of two optical journals [1] devoted to this subject). These states show reduced fluctuations in one quadrature component of the electromagnetic field and enhanced fluctuations in the other.
Keywords
Phase Distribution Wigner Function Quadrature Component Quasi Probability Distribution Minimum Uncertainty State
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Special issues: J. Opt. Soc. Am. B4, No. 10 (1987).Google Scholar
- J. Mod. Opt. 34, No. 6/7 (1987).Google Scholar
- [2]C. K. Hong and L. Mandel, Phys. Rev. Lett. 54, 323 (1985).CrossRefGoogle Scholar
- C. K. Hong and L. Mandel, Phys. Rev. A 32, 974 (1985).CrossRefGoogle Scholar
- [3]S. L. Braunstein and R. I. McLachlan, Phys. Rev. A 35, 1659 (1987).CrossRefGoogle Scholar
- [4]M. Hillery, Opt. Commun. 62, 135 (1987).CrossRefGoogle Scholar
- [5]M. Hillery, Phys. Rev. A 36, 3796 (1987).CrossRefGoogle Scholar
- [6]D. Yu and M. Hillery, Quantum Optics 6, 37 (1994).CrossRefGoogle Scholar
- [7]P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).CrossRefGoogle Scholar
- S. M. Barnett and D. T. Pegg, J. Phys. A 19, 3849 (1986).MathSciNetCrossRefGoogle Scholar
- [8]D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988).CrossRefGoogle Scholar
- [9]S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989).CrossRefGoogle Scholar
- [10]D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).CrossRefGoogle Scholar
- [11]A. Bandilla and H. Paul, Ann. Phys. (Leipzig) 23, 323 (1969).Google Scholar
- [12]S. L. Braunstein and C. M. Caves, Phys. Rev. A 42, 4115 (1990).CrossRefGoogle Scholar
- [13]W. Schleich, R. J. Horowicz and S. Varro, Phys. Rev. A 40, 7405 (1989).CrossRefGoogle Scholar
- [14]W. Schleich, A. Bandilla and H. Paul, Phys. Rev. A 45, 6652 (1992).CrossRefGoogle Scholar
- [15]R. Tanas and Ts. Gantsog, Phys. Rev. A 45, 5031 (1992).MathSciNetCrossRefGoogle Scholar
- [16]R. Tanas, B. K. Murzakhmetov, Ts. Gantsog and A. V. Chizhov, Quantum Optics 4, 1 (1992).MathSciNetCrossRefGoogle Scholar
- [17]A. V. Chizhov, Ts. Gantsog and B. K. Murzakhmetov, Quantum Optics 5, 85 (1993).CrossRefGoogle Scholar
- [18]A. V. Chizhov and B. K. Murzakhmetov, Physics Letters A 176, 33 (1993).CrossRefGoogle Scholar
- [19]K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857; 1883 (1969).CrossRefGoogle Scholar
- [20]B. M. Garraway and P. L. Knight, Phys. Rev. A 46, R5346 (1992).CrossRefGoogle Scholar
- B. M. Garraway and P. L. Knight, Physica Scripta T48, 66 (1993).CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1997