Advertisement

Quantum Beats Described by de Broglian Probabilities

  • Mirjana Božić
  • Zvonko Marić
  • Dušan Arsenović
Part of the NATO ASI Series book series (NSSB, volume 358)

Abstract

Compatible statistical interpretation is used to give objective interpretation of quantum beats in atomic fluorescence.

Keywords

Quantum Theory Spontaneous Emission Quantum Electrodynamic Coherent Superposition Quantum Beat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Mollenstedt and C. Jönsson, Some remarks on the quantum mechanics of the electron, Z. Phys. 155:472 (1959).CrossRefGoogle Scholar
  2. G. Möllenstedt, Physica B151:201 (1988).Google Scholar
  3. 2.
    A. Tonomura, “Electron Holography,” Springer-Verlag, Berlin (1993).Google Scholar
  4. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, H. Ezawa, Am. J. Phys. 57:7 (1989).CrossRefGoogle Scholar
  5. 3.
    “Matter-Wave Interferometry,” G. Badurek, H. Rauch and A. Zeilinger eds. Physica B151 North-Holland, Amsterdam (1988).Google Scholar
  6. 4.
    “Quantum Interferometry”, F. de Martini, G. Denardo and A. Zeilinger eds., World Scientific, Singapore (1994).Google Scholar
  7. 5.
    A.O. Barut, Brief history and recent developments in electron theory and quantum electrodynamics, in: “The Electron,” D. Hestenes and A. Weingartshofen, eds., Kluwer Acad. Pub., Dordrecht (1991).Google Scholar
  8. 6.
    E. Schrödinger, Are there quantum jumps?, The British Journal for the Philosophy of Science, 3:109 (1952).CrossRefGoogle Scholar
  9. E. Schrödinger, What is an elementary particle, Endeavour 9:109 (1950).Google Scholar
  10. 7.
    “Quantum Measurement Theory,” J.A. Wheeler and W.H. Zurek, eds., Princeton Univ. Press, Princeton-New Jersey (1983).Google Scholar
  11. 8.
    L. de Broglie, “Etude Critique des Bases de l’Interprétation Actuelle da la Mécanique Ondulatoire”, Gauthier-Villars, Paris (1963).Google Scholar
  12. 9.
    J.P. Vigier, New theoretical implications of neutron interferometric experiments, Physica B151:386 (1988).Google Scholar
  13. 10.
    F. Selleri, “Quantum Paradoxes and Physical Reality”, Kluwer Acad. Publ., Dordrecht (1990).CrossRefGoogle Scholar
  14. 11.
    M. Bozic, Neutron optics, in “New Frontiers of Quantum Electrodynamics and Quantum Optics”, A.O. Barut, ed., Plenum, New York, (1990).Google Scholar
  15. 12.
    “Neutron Interferometry,” U. Bonse and H. Rauch, Clarendon Press, Oxford (1979).Google Scholar
  16. 13.
    O. Carnel, J. Mlynek, Young’s double-slit experiment with atoms: a simple atom interferometer, Phys. Rev. Letters, 66:2689 (1991).CrossRefGoogle Scholar
  17. 14.
    A.O. Barut, De Broglie wavelets, Schrödinger waves and classical trajectories, Found. Phys. 20:1233 (1990).MathSciNetCrossRefGoogle Scholar
  18. A.O. Barut, How to avoid quantum paradoxes, Found. Phys. 22:137 (1992).MathSciNetCrossRefGoogle Scholar
  19. 15.
    A.O. Barut, E = ħω, Phys. Lett. 143:349 (1990).MathSciNetCrossRefGoogle Scholar
  20. 16.
    A.O. Barut, Quantum theory of single events, in: “Symposium on the Foundations of Modern Physics”, P. Lahti et al. eds. World Scientific, Singapore (1991) p. 31.Google Scholar
  21. 17.
    A.O. Barut and S. Basri, Path integrals and quantum interference, Amer. J. Phys. 60:896 (1992).CrossRefGoogle Scholar
  22. 18.
    A.O. Barut, The deterministic wave mechanics. A bridge between classical mechanics and probabilistic quantum theory, in: “The Interpretation of quantum Theory: Where we stand,” L. Acardi, ed., Acta Encyclopedia, (1993).Google Scholar
  23. 19.
    F. Selleri and G. Tarozzi, Is nondistributivity for microsystems empirically founded?, Nuovo Cimento 43:31 (1978).MathSciNetGoogle Scholar
  24. 20.
    M. Bozić, Z. Marić and J.P. Vigier, De-Broglian probabilities in the double-slit experiment, Found. Phys. 22:1325 (1992).MathSciNetCrossRefGoogle Scholar
  25. 21.
    M. Bozić, Compatible setatistical interpretation of interference in double-slit interferometer, in: “Waves and Paricles in Light and Matter”, A. van der Merwe and A. Garuccio, eds., Plenum, New Yrok (1994).Google Scholar
  26. 22.
    M. Bozić and Z. Marić, Probability and interference, in: “Courants, amers et écueils en microphysique,” G. Lochac and P. Lochac, eds., Fondation Louis de Broglie, Paris (1994).Google Scholar
  27. 23.
    M. Bozic and Z. Marie, Probabilities of de Broglie’s trajectories in Mach-Zehnder and in neutron interferometers, Phys. Lett. A158:33 (1991).Google Scholar
  28. 24.
    M. Bozic and Z. Marie, Compatible statistical interpretation of a wave packet, Found. Phys. 25:159 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 25.
    M. Bozic and D. Arsenovic, in: “Frontiers of Fundamental Physics,” M. Barone and F. Selleri, eds., Plenum, New York (1994).Google Scholar
  30. 26.
    J.N. Dodd, W.J. Sandle, D. Zissermann, Study of resonance fluorescence in cadmium: Modulation effects and lifetime measure, Proc. Phys. Soc. London 92:497 (1967).CrossRefGoogle Scholar
  31. 27.
    S. Haroche, J.A. Paisner, and A.L. Schawlaw, Hyperfine quantum beaats observed in Cs vapor under pulsed dye laser excitation, Phys. Rev. Lett. 30:948 (1973).CrossRefGoogle Scholar
  32. 28.
    I.A. Sellin, J.R. Mowal, R.S. Peterson, P.M. Griffin, R. Lanbert, and H.H. Haselton, Observation of coherent electron-density-distribution oscillations in collision-averaged foil excitation of the n = 2 hydrogen levels, Phys. Rev. Lett. 31:1335 (1973).CrossRefGoogle Scholar
  33. 29.
    W.W. Chow, M.O. Scully, J.O. Stoner, Jr; Quantum beat phenomena described by quantum electrodynamics and neoclassical theory, Phys. Rev. A 11:1380 (1975).CrossRefGoogle Scholar
  34. 30.
    P.L. Knight and P.W. Milonni, The Rabi frequency in optical spectra, Phys. Reports 66:21 (1980).MathSciNetCrossRefGoogle Scholar
  35. 31.
    L. Allen and J.H. Eberly, “Optical Resonance and Two-level Atoms”, Dover, New York (1987).Google Scholar
  36. 32.
    G. Raithel, O. Benson and H. Walther, Dynamics of the micromaser field, this Proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mirjana Božić
    • 1
  • Zvonko Marić
    • 1
  • Dušan Arsenović
    • 1
  1. 1.Institute of PhysicsBelgradeYugoslavia

Personalised recommendations