Skip to main content

Quantum Beats Described by de Broglian Probabilities

  • Chapter
Electron Theory and Quantum Electrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 358))

  • 317 Accesses

Abstract

Compatible statistical interpretation is used to give objective interpretation of quantum beats in atomic fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Mollenstedt and C. Jönsson, Some remarks on the quantum mechanics of the electron, Z. Phys. 155:472 (1959).

    Article  Google Scholar 

  2. G. Möllenstedt, Physica B151:201 (1988).

    Google Scholar 

  3. A. Tonomura, “Electron Holography,” Springer-Verlag, Berlin (1993).

    Google Scholar 

  4. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, H. Ezawa, Am. J. Phys. 57:7 (1989).

    Article  Google Scholar 

  5. “Matter-Wave Interferometry,” G. Badurek, H. Rauch and A. Zeilinger eds. Physica B151 North-Holland, Amsterdam (1988).

    Google Scholar 

  6. “Quantum Interferometry”, F. de Martini, G. Denardo and A. Zeilinger eds., World Scientific, Singapore (1994).

    Google Scholar 

  7. A.O. Barut, Brief history and recent developments in electron theory and quantum electrodynamics, in: “The Electron,” D. Hestenes and A. Weingartshofen, eds., Kluwer Acad. Pub., Dordrecht (1991).

    Google Scholar 

  8. E. Schrödinger, Are there quantum jumps?, The British Journal for the Philosophy of Science, 3:109 (1952).

    Article  Google Scholar 

  9. E. Schrödinger, What is an elementary particle, Endeavour 9:109 (1950).

    Google Scholar 

  10. “Quantum Measurement Theory,” J.A. Wheeler and W.H. Zurek, eds., Princeton Univ. Press, Princeton-New Jersey (1983).

    Google Scholar 

  11. L. de Broglie, “Etude Critique des Bases de l’Interprétation Actuelle da la Mécanique Ondulatoire”, Gauthier-Villars, Paris (1963).

    Google Scholar 

  12. J.P. Vigier, New theoretical implications of neutron interferometric experiments, Physica B151:386 (1988).

    Google Scholar 

  13. F. Selleri, “Quantum Paradoxes and Physical Reality”, Kluwer Acad. Publ., Dordrecht (1990).

    Book  Google Scholar 

  14. M. Bozic, Neutron optics, in “New Frontiers of Quantum Electrodynamics and Quantum Optics”, A.O. Barut, ed., Plenum, New York, (1990).

    Google Scholar 

  15. “Neutron Interferometry,” U. Bonse and H. Rauch, Clarendon Press, Oxford (1979).

    Google Scholar 

  16. O. Carnel, J. Mlynek, Young’s double-slit experiment with atoms: a simple atom interferometer, Phys. Rev. Letters, 66:2689 (1991).

    Article  Google Scholar 

  17. A.O. Barut, De Broglie wavelets, Schrödinger waves and classical trajectories, Found. Phys. 20:1233 (1990).

    Article  MathSciNet  Google Scholar 

  18. A.O. Barut, How to avoid quantum paradoxes, Found. Phys. 22:137 (1992).

    Article  MathSciNet  Google Scholar 

  19. A.O. Barut, E = ħω, Phys. Lett. 143:349 (1990).

    Article  MathSciNet  Google Scholar 

  20. A.O. Barut, Quantum theory of single events, in: “Symposium on the Foundations of Modern Physics”, P. Lahti et al. eds. World Scientific, Singapore (1991) p. 31.

    Google Scholar 

  21. A.O. Barut and S. Basri, Path integrals and quantum interference, Amer. J. Phys. 60:896 (1992).

    Article  Google Scholar 

  22. A.O. Barut, The deterministic wave mechanics. A bridge between classical mechanics and probabilistic quantum theory, in: “The Interpretation of quantum Theory: Where we stand,” L. Acardi, ed., Acta Encyclopedia, (1993).

    Google Scholar 

  23. F. Selleri and G. Tarozzi, Is nondistributivity for microsystems empirically founded?, Nuovo Cimento 43:31 (1978).

    MathSciNet  Google Scholar 

  24. M. Bozić, Z. Marić and J.P. Vigier, De-Broglian probabilities in the double-slit experiment, Found. Phys. 22:1325 (1992).

    Article  MathSciNet  Google Scholar 

  25. M. Bozić, Compatible setatistical interpretation of interference in double-slit interferometer, in: “Waves and Paricles in Light and Matter”, A. van der Merwe and A. Garuccio, eds., Plenum, New Yrok (1994).

    Google Scholar 

  26. M. Bozić and Z. Marić, Probability and interference, in: “Courants, amers et écueils en microphysique,” G. Lochac and P. Lochac, eds., Fondation Louis de Broglie, Paris (1994).

    Google Scholar 

  27. M. Bozic and Z. Marie, Probabilities of de Broglie’s trajectories in Mach-Zehnder and in neutron interferometers, Phys. Lett. A158:33 (1991).

    Google Scholar 

  28. M. Bozic and Z. Marie, Compatible statistical interpretation of a wave packet, Found. Phys. 25:159 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Bozic and D. Arsenovic, in: “Frontiers of Fundamental Physics,” M. Barone and F. Selleri, eds., Plenum, New York (1994).

    Google Scholar 

  30. J.N. Dodd, W.J. Sandle, D. Zissermann, Study of resonance fluorescence in cadmium: Modulation effects and lifetime measure, Proc. Phys. Soc. London 92:497 (1967).

    Article  Google Scholar 

  31. S. Haroche, J.A. Paisner, and A.L. Schawlaw, Hyperfine quantum beaats observed in Cs vapor under pulsed dye laser excitation, Phys. Rev. Lett. 30:948 (1973).

    Article  Google Scholar 

  32. I.A. Sellin, J.R. Mowal, R.S. Peterson, P.M. Griffin, R. Lanbert, and H.H. Haselton, Observation of coherent electron-density-distribution oscillations in collision-averaged foil excitation of the n = 2 hydrogen levels, Phys. Rev. Lett. 31:1335 (1973).

    Article  Google Scholar 

  33. W.W. Chow, M.O. Scully, J.O. Stoner, Jr; Quantum beat phenomena described by quantum electrodynamics and neoclassical theory, Phys. Rev. A 11:1380 (1975).

    Article  Google Scholar 

  34. P.L. Knight and P.W. Milonni, The Rabi frequency in optical spectra, Phys. Reports 66:21 (1980).

    Article  MathSciNet  Google Scholar 

  35. L. Allen and J.H. Eberly, “Optical Resonance and Two-level Atoms”, Dover, New York (1987).

    Google Scholar 

  36. G. Raithel, O. Benson and H. Walther, Dynamics of the micromaser field, this Proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Božić, M., Marić, Z., Arsenović, D. (1997). Quantum Beats Described by de Broglian Probabilities. In: Dowling, J.P. (eds) Electron Theory and Quantum Electrodynamics. NATO ASI Series, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0081-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0081-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0083-8

  • Online ISBN: 978-1-4899-0081-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics