Advertisement

Theory of the Energy Levels and Precise Two-Photon Spectroscopy of Atomic Hydrogen and Deuterium

  • K. Pachucki
  • D. Leibfried
  • M. Weitz
  • A. Huber
  • W. König
  • T. W. Hänsch
Part of the NATO ASI Series book series (NSSB, volume 358)

Abstract

In last years a significant progress has been achieved both in the experimental technique and the theoretical methods for the determination of the energy levels of simple hydrogenic systems. We review recent two-photon spectroscopic measurements performed in Garching and the relevant theoretical predictions for the hydrogen energy levels. A good agreement is achieved when all theoretical contributions are included, showing the importance of recently calculated higher order corrections.

Keywords

Charge Radius Vacuum Polarization Lamb Shift Nuclear Charge Radius Rydberg Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Andreae, W. König, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, and T. W. Hänsch, Phys. Rev. Lett., 69, 1923 (1992).CrossRefGoogle Scholar
  2. [2]
    M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, and T.W. Hänsch, Phys. Rev. Lett. 72, 328 (1994)CrossRefGoogle Scholar
  3. M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, W. Vassen, C. Zimmermann, K. Pachucki, T.W. Hänsch, L. Julien, and F. Biraben, Phys. Rev. A, in press.Google Scholar
  4. [3]
    F. Schmidt-Kaler, D. Leibfried, M. Weitz, and T. W. Hänsch, Phys. Rev. Lett. 70, 2261 (1993).CrossRefGoogle Scholar
  5. [4]
    J. R. Sapirstein and D. R. Yennie, in Quantum Electrodynamics, Editor T. Kinoshita, World Scientific (1990).Google Scholar
  6. [5]
    F. Schmidt-Kaler, D. Leibfried, S. Seel, C. Zimmermann, W. König, M. Weitz, and T.W. Hänsch, Phys. Rev. A 51, 2789 (1995).CrossRefGoogle Scholar
  7. [6]
    C.O. Weiss, G. Kramer, B. Lipphardt, E. Garcia, IEEE J. Quantum Electron. QE-24, 1970 (1988).CrossRefGoogle Scholar
  8. [7]
    B. Dahmani, L. Hollberg, and R. Drullinger, Opt. Lett. 12, 876 (1987).CrossRefGoogle Scholar
  9. [8]
    D. Leibfried, F. Schmidt-Kaler, M. Weitz, and T.W. Hänsch, Appl. Phys. B 56. 65 (1993).Google Scholar
  10. [9]
    M.G. Boshier, P.G.E. Baird, C.J. Foot, E.A. Hinds, M.D. Plimmer, D.N. Stacey, J.B. Swan, D.A. Tate, D.M. Warrington, G.K. Woodgate, Phys. Rev. A 40, 6169 (1989).Google Scholar
  11. [10]
    F. Nez, M.D. Plimmer, S. Bourzeix, L. Julien, F. Biraben, R. Felder, Y. Milleroux, and P. de Natale, Europhys. Lett 24, 635 (1993).CrossRefGoogle Scholar
  12. [11]
    D.J. Berkeland, E.A. Hinds and M. Boshier, Phy. Rev. Lett. 75 2470 (1995).CrossRefGoogle Scholar
  13. [12]
    S.G. Karshenboim, JETP, in press.Google Scholar
  14. [13]
    V. G. Pal’chikov, Yu. L. Sokolov, and V. P. Yakovlev, JETP Lett. 38, 418 (1983).Google Scholar
  15. [14]
    R.S. van Dyck, Jr., et ai, private communication.Google Scholar
  16. [15]
    S. R. Lundeen, F. M. Pipkin, Phys. Rev. Lett. 46, 232 (1981).CrossRefGoogle Scholar
  17. [16]
    E.W. Hagley and F.M. Pipkin, Phys.Rev.Lett. 72, 1172, (1994).CrossRefGoogle Scholar
  18. [17]
    W.A. Barker and F.N. Glover, Phys. Rev. 99, 317 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  19. [18]
    P. J. Mohr, Phys. Rev. A 46, 4421, (1992).Google Scholar
  20. [19]
    K. Pachucki, Phys. Rev. A, 46 648, (1992).CrossRefGoogle Scholar
  21. K. Pachucki, Ann. Phys. (N.Y.), 226 1, (1993).CrossRefGoogle Scholar
  22. [20]
    P. J. Mohr, Ann. Phys. (N.Y) 88, 26, 52 (1974).CrossRefGoogle Scholar
  23. [21]
    G. W. Erickson and D. R. Yennie, Ann. Phys. (N.Y) 35, 271, 447 (1965).MathSciNetCrossRefGoogle Scholar
  24. [22]
    G.W.F. Drake, Adv. At. Mol. Opt. Phys. 31, 1 (1993).CrossRefGoogle Scholar
  25. [23]
    P. J. Mohr and Y.-K. Kim, Phys. Rev. A 45, 2727 (1992).CrossRefGoogle Scholar
  26. [24]
    R. Barbieri, J. A. Mignaco, and E. Remiddi, Nuovo Cim. Lett. 3, 588 (1970).CrossRefGoogle Scholar
  27. B. E. Lautrup, A. Peterman, and E. de Rafael, Phys. Lett. B 31, 577 (1970).Google Scholar
  28. [25]
    K. Pachucki, Phys. Rev. A, 48, 2609 (1993).CrossRefGoogle Scholar
  29. K. Pachucki, Phys. Rev. Lett. 72, 3154 (1994).CrossRefGoogle Scholar
  30. [26]
    M.I. Eides and H. Grotch, Phys. Lett. B 301, 127 (1993).CrossRefGoogle Scholar
  31. M.I. Eides and H. Grotch, Phy. Lett. B 308, 389 (1993).CrossRefGoogle Scholar
  32. M. Eides, H. Grotch, and P. Pebler, Phys. Rev. A 50, 144 (1994).CrossRefGoogle Scholar
  33. [27]
    M. Eides and V. Shelyuto, Phys. Rev. A 52, 954 (1995), and references therein.CrossRefGoogle Scholar
  34. [28]
    S. G. Karshenboim, JETP 76, 541 (1993).Google Scholar
  35. [29]
    E. E. Salpeter, Phys. Rev. 87, 328 (1952).zbMATHCrossRefGoogle Scholar
  36. G.W. Erickson, J. Phys. Chem. Ref. Data 6, 833 (1977).CrossRefGoogle Scholar
  37. [30]
    M. Doncheski, H. Grotch and G.W. Erickson, Phys. Rev. A 43, 2125 (1991).CrossRefGoogle Scholar
  38. [31]
    I. B. Khriplovich, A. I. Milstein and A. S. Yelkhovsky, Phys. Scrip. T46, 252 (1993).CrossRefGoogle Scholar
  39. R. N. Fell, I. B. Khriplovich, A. I. Milstein and A. S. Yelkhovsky, Phys. Lett. A 181, 172 (1993).CrossRefGoogle Scholar
  40. [32]
    K. Pachucki and H. Grotch, Phys. Rev. A 51, 1854 (1995).CrossRefGoogle Scholar
  41. [33]
    G. Bhatt and H. Grotch, Ann. Phys. (NY) 178, 1 (1987).CrossRefGoogle Scholar
  42. [34]
    K. Pachucki, Phys. Rev. A 52, 1079 (1995).CrossRefGoogle Scholar
  43. [35]
    K. Pachucki, D. Leibfried, and T.W. Hänsch, Phys. Rev. A 48, R1 (1993).CrossRefGoogle Scholar
  44. K. Pachucki, M. Weitz, and T.W. Hänsch, Phys. Rev. A. 49, 2255 (1994).CrossRefGoogle Scholar
  45. [36]
    J. Martorell, D.W. Sprung, and D.C. Zheng, Phys. Rev. C 51, 1127 (1995).CrossRefGoogle Scholar
  46. [37]
    W. Leidemann and R. Rosenfelder, Phys. Rev. C 51, 427 (1995).CrossRefGoogle Scholar
  47. [38]
    K. Pachucki and S. Karshenboim, J. Phys. B 28, L221 (1995).CrossRefGoogle Scholar
  48. [39]
    G. G. Simon, C. Schmidt, F. Borkowski, and V. H. Walther, Nucl. Phys. A 333, 381 (1980).CrossRefGoogle Scholar
  49. [40]
    L. N. Hand, D. J. Miller, and R. Wilson, Rev. Mod. Phys. 35, 335 (1963).CrossRefGoogle Scholar
  50. [41]
    M. Boshier, private communication.Google Scholar
  51. [42]
    A. van Wijngaarden, J. Kwela, and G.W.F. Drake, Phys. Rev. A 43, 3325 (1991).CrossRefGoogle Scholar
  52. [43]
    D. Taqqu, Paul Scherrer Institut, Villingen Suisse, private communication.Google Scholar
  53. [44]
    T. Kinoshita and P. Lepage, in Quantum Electrodynamics, edited by T. Kinoshita, (World Scientific, Singapore, 1990), p. 560.Google Scholar
  54. [45]
    G. Audi and A.H. Waspra, Nucl. Phys. A 565, 1 (1993).CrossRefGoogle Scholar
  55. [46]
    S. Klarsfeld et al, Nucl. Phys. A456, 373 (1986).Google Scholar
  56. [47]
    J. L. Friar, G.L. Payne, V.G.J. Stoks, and J.J. de Swart, Phys. Lett. B311, 4 (1993).Google Scholar
  57. [48]
    R. Barbieri, J.A. Mignaco, and E. Remiddi, Nuovo Cim. 11A, 824 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. Pachucki
    • 1
  • D. Leibfried
    • 1
  • M. Weitz
    • 1
  • A. Huber
    • 1
  • W. König
    • 1
  • T. W. Hänsch
    • 1
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations