Inducible Fas-Resistance in B Lymphocytes

  • Thomas L. Rothstein
  • Thomas J. Schneider
  • Ann Marshak-Rothstein
  • Linda C. Foote


Activation of B lymphocytes, such as that provided by CD40L, is required for induction of susceptibility to Fas-mediated apoptosis. However, all forms of B cell activation do not promote Fas-sensitivity. Anti-immunoglobulin antibody, and IL-4, produce a state of Fas-resistance in otherwise sensitive (CD40L-stimulated) B cell targets through at least partially distinct signaling pathways. Inducible Fas-resistance may act to thwart B cell deletion mediated by FasL-expressing CD4+ Th1 cells, either prior to or during germinal center formation. This may promote the viability of autoreactive B cells, thereby fostering autoantibody formation as observed in IL-4 overexpressing transgenic mice, with implications for normal- and auto-immunity.


Germinal Center Phorbol Myristate Acetate Antigen Receptor Cell Antigen Receptor Germinal Center Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nagata, and P. Golstein. The Fas death factor. Science 267:1449. (1995).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Nishimura, A. Ishii, Y. Kobayashi, Y. Yamasaki, and S. Yonehara. Expression and function of mouse Fas antigen on immature and mature T cells. J. Immunol. 154:4395 (1995).PubMedGoogle Scholar
  3. 3.
    R. Watanabe-Fukunaga, C.I. Brannan, N. Itoh, S. Yonehara, N.G. Copeland, N.A. Jenkins, and S. Nagata. The cDNA structure, expression and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148:1274(1992).PubMedGoogle Scholar
  4. 4.
    S. Nagata, and T. Suda. Fas and Fas ligand: Ipr and gld mutations. Immunol. Today 16:39 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    F. Rieux-Laucat, F. Le Deist, C. Hivroz, I.A.G. Roberts, K.M. Debatin, A. Fischer, and J.P. de Villartay. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347(1995).PubMedCrossRefGoogle Scholar
  6. 6.
    G.H. Fisher, FJ. Rosenberg, S.E. Straus, J.K. Kale, L.A. Middelton, A.Y. Lin, W. Strober, M.J. Lenardo, and J.M. Puck. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    L. B. Owen-Schaub, S. Yonehara, W. L. Crump III, and E. A. Grimm. DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell. Immunol. 140:197 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    S.-T. Ju, H. Cui, D. J. Panka, R. Ettinger, and A. Marshak-Rothstein. Participation of target Fas protein in apoptosis pathway induced by CD4+ Th1 and CD8+ cytotoxic T cells. Proc. Natl. Acad. Sci. USA 91:4185 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    Daniel, P. T., and P. H. Krammer. Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J. Immunol. 152:5624. (1994).PubMedGoogle Scholar
  10. 10.
    Rothstein, T. L., J. K. M. Wang, D. J. Panka, L. C. Foote, Z. Wang, B. Stanger, H. Cui, S.-T. Ju, and A. Marshak-Rothstein. Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 374:163 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    C. Lagresle, P. Mondiere, C. Bella, P.H. Krammer, and T. Defrance. Concurrent engagement of CD40 and the antigen receptor protects naive and memory human B cells from APO-1 /Fas-mediated apoptosis. J. Exp. Med. 183:1377(1996).PubMedCrossRefGoogle Scholar
  12. 12.
    L.C. Foote, T.J. Schneider, G.M. Fischer, J.K.M. Wang, B. Rasmussen, K.A. Campbell, D.H. Lynch, S.-T. Ju, A. Marshak-Rothstein, and T.L. Rothstein. Intracellular signaling for inducible antigen receptor-mediated Fas resistance in B cells. J. Immunol. 157:1878.Google Scholar
  13. 13.
    P. Lane, T. Brocker, S. Hubele, E. Padovan, A. Lanzavecchia, and F. McConnell. Soluble CD40 ligand can replace the normal T-cell derived CD40 ligand signal to B cells in T cell dependent activation. J. Exp. Med. 177:1209.Google Scholar
  14. 14.
    D.A. Francis, J.G. Karras, X. Ke, R. Sen, and T.L. Rothstein. Induction of the transcription factors NF-kB, AP-1 and NF-AT during B cell stimulation through the CD40 receptor. Intl. Immunol. 7:151 (1995).CrossRefGoogle Scholar
  15. 15.
    Cifone, M.G., R. De Maria, P. Roncaioli, M.R. Rippo, M. Azuma, L.L. Lanier, A. Santoni, and R. Testi. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J. Exp. Med. 177:1547(1993).Google Scholar
  16. 16.
    E. Gulbins, R. Bissonnette, A. Mahboubi, S. Martin, W. Nishioka, T. Brunner, G. Baier, G. Baier-Bitterlich, C. Byrd, F. Lang, R. Kolesnick, A. Altman, and D. Green. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 2:341 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    C. G. Tepper, S. Jayadev, B. Liu, A. Bielawska, R. Wolff, S. Yonehara, Y. A. Hannun, and M. F. Seldin. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc. Natl. Acad. Sci. USA 92:8443(1995).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Cory. Regulation of lymphocyte survival by the Bcl-2 gene family. Ann. Rev. Immunol. 13:513 (1995).CrossRefGoogle Scholar
  19. 19.
    Z. Wang, J.G. Karras, R.G. Howard, and T.L. Rothstein. Induction of bcl-x by CD40 engagement rescues slg-induced apoptosis in murine B cells. J. Immunol. 155:3722 (1995).PubMedGoogle Scholar
  20. 20.
    P. Liang and A.B. Pardee. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Ohara, and W. E. Paul. B cell stimulatory factor BSF-1: Production of a monoclonal antibody and molecular characterization. Nature 315:333 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    A. D. Keegan, K. Nelms, L.-M. Wang, J. H. Pierece, and W. E. Paul. Interleukin 4 receptor: signaling mechanisms. Immunol. Today 15:423 (1994).PubMedCrossRefGoogle Scholar
  23. 23.
    J. C. Cambier, C. M. Pleiman, and M. R. Clark. Signal transduction by the B cell antigen receptor and its coreceptors. Ann. Rev. Immunol. 12:457 (1994).CrossRefGoogle Scholar
  24. 24.
    L.B. Ivashkiv. Cytokines and STATs: How can signals achieve specificity? Immunity 3:1 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    J.G. Karras, Z. Wang, S.J. Coniglio, D.A. Frank, and T.L. Rothstein. Antigen-receptor engagement in B cells induces nuclear expression of STAT5 and STAT6 proteins that bind and transacctivate an IFN-y activation site. J. Immunol. 157:39.Google Scholar
  26. 26.
    J. J. Mond, N. Feuerstein, F. D. Finkelman, F. Huang, K.-P. Huang, and G. Dennis. B-lymphocyte activation mediated by anti-immunoglobulin antibody in the absence of protein kinase C. Proc. Natl. Acad. Sci. USA 84:8588(1987).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Kawakami, and D. C. Parker. Antigen and helper T lymphocytes activate B lymphocytes by distinct signaling pathways. Eur. J. Immunol. 23:77 (1993).PubMedCrossRefGoogle Scholar
  28. 28.
    M. P. Cooke, A. W. Heath, K. M. Shokat, Y. Zeng, F. D. Finkelman, P. S. Linsley, M. Howard, and C. C. Goodnow. Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells. J. Exp. Med. 179:425 (1994).PubMedCrossRefGoogle Scholar
  29. 29.
    J. M. Eris, A. Basten, R. Brink, K. Doherety, M. R. Kehry, and P. D. Hodgkin. Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions. Proc. Natl Acad. Sci. USA 92:4392 (1994).CrossRefGoogle Scholar
  30. 30.
    C.C. Goodnow. Transgenic mice and analysis of B-cell tolerance. Annu. Rev. Immunol. 10:489 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    S.E. Bell and C.C. Goodnow. A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes. EMBO J. 1390:816 (1994).Google Scholar
  32. 32.
    D.A. Fulcher and A. Basten. Reduced life span of anergic self-reactive B cells in a double-transgenic model. J. Exp. Med. 179:125 (1994).PubMedCrossRefGoogle Scholar
  33. 33.
    J. C. Rathmell, M. R Cooke, W. Y. Ho, J. Grein, S. E. Townsend, M. M. Davis, and C. C. Goodnow. CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells. Nature 376:181 (1995).PubMedCrossRefGoogle Scholar
  34. 34.
    R.I. Tepper, D.A. Levinson, B.Z. Stanger, J. Campos-Torres, A.K. Abbas, and R Leder. IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell 62:457 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    E.M. Tan, R Rodnan, and L. Garcia. Diversity of antinuclear antibodies in progressive systemic sclerosis. Arthr. Rheum. 23:617(1978).CrossRefGoogle Scholar
  36. 36.
    T.L. Rothstein. Signals and susceptibility to programmed cell death in B cells. Curr. Opin. Immunol. 8:362 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    L. Zhang, R.G. Miller, and J. Zhang. Characterization of apoptosis-resistant antigen-specific T cells in vivo. J. Exp. Med. 183:2065 (1996).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Wang, I. Taniuchi, Y. Maekawa, M. Howard, M.D. Cooper, and T. Watanabe. Expression and function of Fas antigen on activated murine B cells. Eur. J. Immunol. 26:92 (1996).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Ogasawara, R. Watanabe-Fukunaga, M. Adachi, A. Matsuzawa, T. Kasugai, Y. Kitamura, N. Itoh, T. Suda, and S. Nagata. Lethal effect of the anti-Fas antibody in mice. Nature 364:806 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Fraser and G. Evan. A license to kill. Cell 85:781 (1996).PubMedCrossRefGoogle Scholar
  41. 41.
    C.C. Goodnow. Balancing immunity and tolerance: Deleting and tuning lymphocyte repertoires. Proc. Natl. Acad. Sci. USA 93:2264 (1996).PubMedCrossRefGoogle Scholar
  42. 42.
    C.C. Goodnow, R. Brink, and E. Adams. Breakdown of self-tolerance in anergic B lymphocytes. Nature 352:532(1991).PubMedCrossRefGoogle Scholar
  43. 43.
    C.C. Goodnow, J. Crosbie, H. Jorgensen, R.A. Brink, and A. Basten. Induction of self-tolerance in mature peripheral B lymphocytes. Nature 342:385 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    B.A. Jacobson, D.J. Panka, K.-A. Nguyen, J. Erikson, A.K. Abbas, and A. Marshak-Rothstein. Anatomy of autoantibody production: Dominant localization of antibody-producing cells to T cell zones in Fas-deficient mice. Immunity 3:509 (1995).PubMedCrossRefGoogle Scholar
  45. 45.
    W.E. Paul and R.A. Seder. Lymphocyte responses and cytokines. Cell 76:241 (1994).PubMedCrossRefGoogle Scholar
  46. 46.
    F. Ramsdell, M.S. Seaman, R.E. Miller, K.S. Picha, M.K. Kennedy, and D.H. Lynch. Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. Intl. Immunol. 6:1545(1994).CrossRefGoogle Scholar
  47. 47.
    L. Galibert, N. Burdin, B. de Saint-Vis, P. Garrone, C. Van Kooten, J. Banchereau, and F. Rousset. CD40 and B cell antigen receptor dual triggering of resting B lymphocytes turns on a partial germinal center phe-notype. J. Exp. Med. 183:77 (1996).PubMedCrossRefGoogle Scholar
  48. 48.
    K.G.C. Smith, G.J. V. Nossal, and D.M. Tarlington. FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl. Acad. Sci. USA 92:11628 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Thomas L. Rothstein
    • 1
    • 2
    • 4
  • Thomas J. Schneider
    • 2
  • Ann Marshak-Rothstein
    • 2
    • 3
  • Linda C. Foote
    • 2
  1. 1.Department of MedicineBoston University Medical CenterBostonUSA
  2. 2.Department of MicrobiologyBoston University Medical CenterBostonUSA
  3. 3.Department of PathologyBoston University Medical CenterBostonUSA
  4. 4.Evans Memorial Department of Clinical ResearchBoston University Medical CenterBostonUSA

Personalised recommendations