Skip to main content

Cell Volume Regulation, Ions, and Apoptosis

  • Chapter
Programmed Cell Death

Abstract

It is generally accepted that all cells have the ability to undergo an internally controlled cell suicide process known as apoptosis, or programmed cell death, in response to a given stimulus or environmental agent39. The apoptotic process efficiently removes or eliminates a population of unwanted cells from the body at a given time in the absence of an inflammatory response. This mode of cell death has been observed during development25,37,40, in the immune system2, and in the progression of both AIDS21,33,34 and cancer24,35,38. Apoptosis is characterized by a distinct set of morphological and biochemical features including cell shrinkage, nuclear condensation, proteolysis, internucleosomal DNA cleavage, and apoptotic body formation27. Over the past 20 years, much attention has focused on the biochemical aspects of apoptosis, including the intracellular signals leading to cell death, the enzymes involved in both protein and DNA degradation, and the role several apoptotic modulating genes play to control or inhibit cell death12. However, of all the characteristics which define this mode of cell death, the observation that the cells shrink or lose volume during apoptosis has remained relatively unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Habori, M. Cell volume and ion transport regulation. Int. J. Biochem. 1994; 26:319–34.

    Article  PubMed  CAS  Google Scholar 

  2. Allen PD, Bustin SA, and Newland AC. The role of apoptosis (programmed cell death) in haemopoiesis and the immune system. Blood Rev. 1993; 7:63–73.

    Article  PubMed  CAS  Google Scholar 

  3. Barbiero G, Duranti F, Bonelli G, Amenta JS, and Baccino FM. Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression. Expt. Cell Res. 1995; 217:410–8.

    Article  CAS  Google Scholar 

  4. Barinaga M. Cell sucide: by ICE, not fire. Science. 1994; 263:754–6.

    Article  PubMed  CAS  Google Scholar 

  5. Beauvais F, Michel L, and Dubertret L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. J. Leukoc. Biol. 1995; 57:851–5.

    PubMed  CAS  Google Scholar 

  6. Benson RSP, Heer S, Dive C., and Watson AJM. Characteristics of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis. Am. J. Physiol. 1996; 270:C1190-1203.

    Google Scholar 

  7. Black RA, Kronheim SR and Sleath PR. Activation of interleukin-1 beta by a co-induced protease. FEBS Lett. 1989; 247:386–390.

    Article  PubMed  CAS  Google Scholar 

  8. Bortner CD, and Cidlowski JA. The absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am. J. Physiol. 1996, 271:C950–61.

    PubMed  CAS  Google Scholar 

  9. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van-Ness K, Greenstreet TA, March CJ, Kronheim SR, Druk T, Cannizzaro LA, Huebner K, and Black RA. Molecular cloning of the interleukin-1 beta converting enzyme. Science. 1992; 256:97–104.

    Article  PubMed  CAS  Google Scholar 

  10. Cheung RK, Grinstein S, and Gelfand EW. Volume regulation by human lymphocytes; Identification of differences between the two major lymphocyte subpopulations. J. Clin. Invest. 1992; 70:632–38.

    Article  Google Scholar 

  11. Grinstein S, Clarke CA, and Rothstein A. Activation of Na+/H+ exchange in lymphocytes by osmoticallyinduced volume changes and by cytoplasmic acidification. J. Gen. Physiol. 1983; 82:619–38.

    Article  PubMed  CAS  Google Scholar 

  12. Hale AJ, Smith CA, Sutherland LC., Stoneman VEA, Longthorne VL, Culhane AC., and Williams GT. Apoptosis: molecular regulation of cell death. Eur. J. Biochem. 1996; 236:1–26.

    Article  PubMed  CAS  Google Scholar 

  13. Haussinger D. The role of cellular hydration in the regulation of cell function. Biochem. J. 1996; 313:697–710.

    PubMed  Google Scholar 

  14. Haussinger D, Lang F, and Gerok W. Regulation of cell function by the cellular hydration state. Am. J. Physiol. 1994; 267:E343–55.

    PubMed  CAS  Google Scholar 

  15. Hempling HG, Thompson S, and Dupre A. Osmotic properties of human lymphocytes. J. Cell. Physiol. 1977; 93:293–302.

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann EK. Volume regulation in cultured cells. Current Topics in Membranes and Transport 1987; 30:125–80.

    Article  Google Scholar 

  17. Hughes FM Jr. and Cidlowski JA. Submitted. 1997.

    Google Scholar 

  18. Jonas D, Walev I, Berger T, Liebetrau M., Palmer M and Bhakdi S. Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect Immun. 1994; 62:1304–12.

    PubMed  CAS  Google Scholar 

  19. Kerr JFR., Wyllie AH, and Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972; 26:239–57.

    Article  PubMed  CAS  Google Scholar 

  20. Klassen NV, Walker PR, Ross CK, Cygler J, and Lach B. Two-stage cell shrinkage and the OER for radiation-induced apoptosis of rat thymocytes. Int. J. Radiat. Biol. 1993; 64:571–81.

    Article  PubMed  CAS  Google Scholar 

  21. Kornbluth RS. Significance of T cell apoptosis for macrophages in HIV infection. J. Leukoc. Biol. 1994; 56:247–56.

    PubMed  CAS  Google Scholar 

  22. Kostura MJ, Tocci MJ, Limjuco G, Chin J, Cameron P, Hillman AG, Chartrain NN and Schmidt JA. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci USA. 1989; 85:5227–31.

    Article  Google Scholar 

  23. Kumar S. ICE-like proteases in apoptosis. Trends Biochem Sci. 1995; 20:198–202.

    Article  PubMed  CAS  Google Scholar 

  24. Lee JM, and Bernstein A. Apoptosis, cancer, and the p53 tumour suppressor gene. Cancer Metastasis Rev. 1995; 14:149–61.

    Article  PubMed  CAS  Google Scholar 

  25. Lo AC., Houenou LJ, and Oppenheim RW. Apoptosis in the nervous system: morphological features, methods, pathology, and prevention. Arch. Histol. Cytol. 1995; 58:139–49.

    Article  PubMed  CAS  Google Scholar 

  26. Martin SJ and Green DR. Protease activation during apoptosis, death by a thousand cuts? Cell. 1995; 82:349–52.

    Article  PubMed  CAS  Google Scholar 

  27. Martin SJ, Green DR, and Cotter TG. Dicing with death: dissecting the components of the apoptotic machinery. Trends Biochem. Sci. 1994; 19:26–30.

    Article  PubMed  CAS  Google Scholar 

  28. Matthews CC., and Feldman EL. Insulin-like growth factor 1 rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death. J. Cell. Physiol. 1996; 166:323–31.

    Article  PubMed  CAS  Google Scholar 

  29. Miura M., Zhu H, Rotello R, Hartwieg EA and Yuan J. Induction of apoptosis in fibroblasts by IL-1 betaconverting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 1993; 75:653–60.

    Article  PubMed  CAS  Google Scholar 

  30. Moule SK, and McGivan JD. Regulation of the plasma membrane potential in hepatocytes — mechanism and physiological significance. Biochim. Biophys. Acta. 1990; 1031:383–97.

    Article  PubMed  CAS  Google Scholar 

  31. Ohyama H, Yamada T, and Watanabe I. Cell volume reduction associated with interphase death in rat thymocytes. Radiation Res. 1981; 85:333–9.

    Article  PubMed  CAS  Google Scholar 

  32. Ohyama H, Yamada T, Ohkawa A, and Watanabe I. Radiation-induced formation of apoptotic bodies in rat thymus. Radiation Res. 1985; 101:123–30.

    Article  PubMed  CAS  Google Scholar 

  33. Orrenius S. Apoptosis: molecular mechanisms and implications for human disease. J. Intern. Med. 1995; 237:529–36.

    Article  PubMed  CAS  Google Scholar 

  34. Oyaizu N, and Pahwa S. Role of apoptosis in HIV disease pathogenesis. J. Clin. Immunol. 1995; 15:217–31.

    Article  PubMed  CAS  Google Scholar 

  35. Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr. Opin. Oncol. 1995; 7:541–6.

    Article  PubMed  CAS  Google Scholar 

  36. Roti-Roti LW, and Rothstein A. Adaptation of mouse leukemic cells (L5178Y) to anisotonic media. I. Cell volume regulation. Exp. Cell Res. 1973; 79:295–310.

    Article  PubMed  CAS  Google Scholar 

  37. Sanders EJ, and Wride MA. Programmed cell death in development. Int. Rev. Cytol. 1995; 163:105–73.

    Article  PubMed  CAS  Google Scholar 

  38. Schulte-Hermann R, Bursch W, Grasl-Kraupp B, Torok L, Ellinger A, Mullauer L. Role of active cell death (apoptosis) in multi-stage carcinogenesis. Toxicol. Lett. 1995; 82–83:143–8.

    Article  PubMed  Google Scholar 

  39. Schwartzman RA, and Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocrine Rev. 1993; 14:133–51.

    CAS  Google Scholar 

  40. Tata JR. Gene expression during metamorphosis: an ideal model for post-embryonic development. Bioessays 1993; 15:239–48.

    Article  PubMed  CAS  Google Scholar 

  41. Thomas N, and Bell PA. Glucocorticoid-induced cell-size changes and nuclear fragility in rat thymocytes. Mol. Cell. Endocrinol. 1981; 22:71–84.

    Article  PubMed  CAS  Google Scholar 

  42. Walev I, Reske K, Palmer M., Valeva A and Bhakdi S. Potassium-inhibited processing of IL-Iβ in human monocytes. EMBO J. 1995; 14:1607–1614.

    PubMed  CAS  Google Scholar 

  43. Wu G, and Flynn NE. Regulation of glutamine and glucose metabolism by cell volume in lymphocytes and macrophages. Biochim. Biophys. Acta. 1995; 1243:343–50.

    Article  PubMed  Google Scholar 

  44. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284:555–6.

    Article  PubMed  CAS  Google Scholar 

  45. Wyllie AH, and Morris RG. Hormone-induced cell death. Purification and properties of thymocytes undergoing apoptosis after glucocorticoid treatment. Am. J. Path. 1982; 109:78–87.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bortner, C.D., Hughes, F.M., Cidlowski, J.A. (1997). Cell Volume Regulation, Ions, and Apoptosis. In: Shi, YB., Shi, Y., Xu, Y., Scott, D.W. (eds) Programmed Cell Death. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0072-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0072-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0074-6

  • Online ISBN: 978-1-4899-0072-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics