Taking Out the Immune Response

The Roles of Fas-Ligand (CD95L) in Immune Regulation
  • Douglas R. Green
  • Brian Tietz
  • Thomas A. Ferguson
  • Thomas Brunner


Since the discovery of Fas (Apo-1/CD95) and its ligand (FasL), the rapid and profound apoptosis triggered by this receptor has held the imagination of researchers in the areas of cell biology and immunology. Antibodies to Fas are potent inducers of apoptosis in many different cell types (Yonehara et al., 1989, Trauth et al., 1989, Owen-Schaub et al., 1992), and the mechanism of this effect is the subject of extensive research (and some controversy). This overview, however, will deal with a different aspect of Fas-mediated apoptosis: its role in the regulation of immune responses.


FasL Expression Corneal Allograft Anterior Chamber Associate Immune Deviation Cell Receptor Transgenic Mouse Privileged Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, M., Suematsu, S., Suda, T., Watanabe, D., Fukuyama, H., Ogasawara, J., Tanaka, T., Yoshida, N., Nagata, S. (1996). Enhanced and accelerated lymphoproliferation in Fas-null mice. Proc. Natl. Acad. Sci. USA 93:2131–2136.PubMedCrossRefGoogle Scholar
  2. Adachi, M., Watanabe-Fukunaga, R., Nagata, S. (1993). Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of Ipr mice. Proc. Natl. Acad. Sci. USA90(5): 1756–1760.PubMedCrossRefGoogle Scholar
  3. Alderson, M. R., Tough, T. W. Davis-Smith, T., Braddy, S., Falk, B., Schooley, K. A., Goodwin, R. G., Smith, C. A., Ramsdell, F., Lynch, D. H. (1995). Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181:71–77.PubMedCrossRefGoogle Scholar
  4. Anel, A., Buferne, M., Boyer, C., Schmitt-Verhulst, A. M., Golstein, P. (1994). T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A. Eur. J. Immunol. 24:2469–2476.Google Scholar
  5. Ashwell, J. D., Cunningham, R. E., Noguchi, P. D., Hernandez, D. (1987). Cell growth cycle block of T cell hybridomas upon activation with antigen. J. Exp. Med. 165:173–194.PubMedCrossRefGoogle Scholar
  6. Askew, D. S., Ashmun, R. A., Simmons, B. C., Cleveland, J. L. (1991). Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6:1915–1922.PubMedGoogle Scholar
  7. Bellgrau, D., Gold, D., Selawry, H., Moore, J., Franzusoff, A., Duke, R. C. (1995). A role for CD95 ligand in preventing graft rejection. Nature 377:630–632.PubMedCrossRefGoogle Scholar
  8. Bisonnette, R. P., Brunner, T., Lazarchik, S. B., Yoo, N. J., Boehm, M. F., Green, D. R., Heyman, R. A. (1995). 9-cis Retinoic Acid Inhibition of Activation-Induced Apoptosis Is Mediated via Regulation of Fas Ligand and Requires Retinoic Acid Receptor and Retinoid X Receptor Activation. Mol. Cell. Biol. 15:5576–5585.Google Scholar
  9. Bisonnette, R. P., McGahon, A., Mahboubi, A., Green, D. R. (1994). Functional Myc-Max Heterodimer Is Required for Activation-induced Apoptosis in T Cell Hybridomas. J. Exp. Med. 180:2413–2418.CrossRefGoogle Scholar
  10. Boehme, S. A., Lenardo, M. J. (1993). Propriocidal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. Eur. J. Immunol. 23:1552–1560.PubMedCrossRefGoogle Scholar
  11. Brunner, T., Mogil, R. J., LaFace, D., Yoo, N. J., Mahboubi, A., Echeverri, F., Martin, S. J., Force, W. R., Lynch, D. H., Ware, C. F., Green, D. R. (1995). Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373:441–444.PubMedCrossRefGoogle Scholar
  12. Brunner, T., Yoo, N. J., LaFace, D., Ware, C. F., Green, D. R. (1996). Activation-induced cell death in murine T cell hybridomas. Differential regulation of Fas (CD95) versus Fas ligand expression by cyclosporin A and FK506. Int. Immunol. 8:1017–1026.Google Scholar
  13. Chan, A. C., Iwashima, M., Turck, C. W., Weiss, A. (1992). ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 71, 649–662.PubMedCrossRefGoogle Scholar
  14. Dhein, J., Walczak, H., Baumler, C., Debatin, K. M., Krammer, P. H. (1995). Autocrine T-cell suicide mediated by APO-l/(Fas/CD95). Nature 373:438–441.PubMedCrossRefGoogle Scholar
  15. Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, C. M., Penn, L. Z., Hancock, D. C. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128.PubMedCrossRefGoogle Scholar
  16. Fotedar, R., Flatt, J., Gupta, S., Margolis, R. L., Fitzgerald, P., Messier, H., Fotedar, A. (1995). Activation-induced T-cell death is cell cycle dependent and regulated by cyclin B. Mol. Cell. Biol. 15:932–942.PubMedGoogle Scholar
  17. French, L. E., Hahne, M., Viard, I., Radlgruber, G., Zanone, R., Becker, K., Müller, C., Tschopp, J. (1996). Fas and Fas Ligand in Embryos and Adult Mice: Ligand Expression in Several Immune-privileged Tissues and Coexpression in Adult Tissues Characterized by Apoptotic Cell Turnover. J. Cell Biol. 133:335–343.PubMedCrossRefGoogle Scholar
  18. Geiger, K., Sarvetnick, N. (1994) Local production of IFN-gamma abrogates the intraocular immune privilege in transgenic mice and prevents the induction of AC AID. J Immunol 153: 5239–5246.PubMedGoogle Scholar
  19. Green, D.R., A. Mahboubi, W. Nishioka, S. Oja, F. Echeverri, Y. Shi, J. Glynn, J. Ashwell, and R. Bissonnette (1994) Promotion and inhibition of activation-induced apoptosis in T cell hybridomas by oncogenes and related signals. Immunol. Rev. 142:321–342.PubMedCrossRefGoogle Scholar
  20. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R., Ferguson, T. A. (1995). Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege. Science 270:1189–1192.PubMedCrossRefGoogle Scholar
  21. Griffith, T. S., Yu, X., Herndon, J. M., Green, D. R., Ferguson, T. A. (1996). CD95-Induced Apoptosis of Lymphocytes in an Immune Privileged Site Induces Immunological Tolerance. Immunity 5:7–16.PubMedCrossRefGoogle Scholar
  22. Hermeking, H., Eick, D. (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091–2093.PubMedCrossRefGoogle Scholar
  23. Iseki, R., Kudo, Y, Iwata, M. (1991). Early mobilization of Ca2+ is not required for glucocorticoid-induced apoptosis in thymocytes. J. Immunol. 151:5198–5207.Google Scholar
  24. Iseki, R., Mukai, M., Iwata, M. (1991). Regulation of T lymphocyte apoptosis. Signals for the antagonism between activation-and glucocorticoid-induced death. J. Immunol. 147:4286–4292.PubMedGoogle Scholar
  25. Iwashima, M., Irving, B. A., van Oers, N. S., Chan, A. C., Weiss, A. (1994). Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136–1139.PubMedCrossRefGoogle Scholar
  26. Iwata, M., Hanaoka, S., Sato, K. (1991). Rescue of thymocytes and T cell hybridomas from glucocorticid-induced apoptosis by stimulation via the T cell receptor/CD3 complex: a possible in vitro model for positive selection of the T cell repertoire. Eur. J. Immunol. 21:643–648.PubMedCrossRefGoogle Scholar
  27. Ju, S. T., Panka, D. J., Cui, H., Ettinger, R., el-Khatib, M., Sherr, D. H., Stanger, B. Z., Marshak-Rothstein, A. (1995). Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444–448.PubMedCrossRefGoogle Scholar
  28. Kinoshita, T., Yokota, T, Arai, K., Miyajima, A. (1995). Regulation of Bcl-2 expression by oncogenic Ras protein in hematopoietic cells. Oncogene 10:2207–2212.PubMedGoogle Scholar
  29. Klas, C., Debatin, K. M., Jonker, R. R., Krammer, P. H. (1993). Activation interferes with the APO-1 pathway in mature human T cells. Int. Immunol. 5:625.PubMedCrossRefGoogle Scholar
  30. Lau, H. T., Yu, M., Fontana, A., Stoeckert, C. J. Jr. (1996). Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273:109–112.PubMedCrossRefGoogle Scholar
  31. Lee, S. L., Wesselschmidt, R. L., Linette, G. P., Kanagawa, O., Russell, J. H., Milbrandt, J. (1995). Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 269:532–535.PubMedCrossRefGoogle Scholar
  32. Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I., Schreiber, S. L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815.PubMedCrossRefGoogle Scholar
  33. Liu, Z. G., Smith, S. W., McLaughlin, K. A., Schwartz, L. M., Osborne, B. A. (1994). Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367:281–284.PubMedCrossRefGoogle Scholar
  34. Mercep, M., Noguchi, P. D., Ashwell, J. D. (1989). The cell cycle block and lysis of an activated T cell hybridoma are distinct processes with different Ca2+ requirements and sensitivity to cyclosporin A. J. Immunol. 142:4085–4092.PubMedGoogle Scholar
  35. Odaka, C., Kizaki, H., Tadakuma, T. (1990). T cell receptor-mediated DNA fragmentation and cell death in T cell hybridomas. J. Immunol. 144:2096–2101.PubMedGoogle Scholar
  36. Owen-Schaub, L. B., Yonehara, S., Crump, W. L., Grimm, E. A. (1992). DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell. Immunol. 140:197–205.PubMedCrossRefGoogle Scholar
  37. Radvanyi, L. G., Shi, Y, Mills, G. B., Miller, R. G. (1996a). Cell cycle progression out of Gl sensitizes primarycultured nontransformed T cells to TCR-mediated apoptosis. Cell. Immunol. 170:260–273.PubMedCrossRefGoogle Scholar
  38. Radvanyi, L. G., Shi, Y, Vaziri, H., Sharma, A., Dhala, R., Mills, G. B., Miller, R. G. (1996b) CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J. Immunol. 156:1788–1798.PubMedGoogle Scholar
  39. Ramsdell, F., Seaman, M. S., Miller, R. E., Picha, K. S., Kennedy, M. K., Lynch, D. H. (1994). Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. Int. Immunol. 6:1545–1553.PubMedCrossRefGoogle Scholar
  40. Rouvier, E., Luciani, M. F., Golstein, P. (1993). Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity. J. Exp. Med. 177:195–200.PubMedCrossRefGoogle Scholar
  41. Russell, J. H., Rush, B., Weaver, C., Wang, R. (1993) Mature T cells of autoimmune Iprllpr mice have a defect in antigen-stimulated suicide. Proc. Natl. Acad. Sci. USA 90:4409–4413.PubMedCrossRefGoogle Scholar
  42. Russell, J. H., Wang, R. (1993) Autoimmune gld mutation uncouples suicide and cytokine/proliferation pathways in activated, mature T cells. Eur. J. Immunol. 23:2379–2382.PubMedCrossRefGoogle Scholar
  43. Russell, J.H., C.L. White, D.Y. Loh, and P. Meleedy-Rey (1991) Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc. Natl. Acad. Sci. USA 88: 2151–2155.PubMedCrossRefGoogle Scholar
  44. Sato, T., Irie, S., Kitada, S., Reed, J. C. (1995). FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268:411–415.PubMedCrossRefGoogle Scholar
  45. Shi, Y., Glynn, J. M., Guilbert, L. J., Cotter, T. G., Bissonnette, R. P., Green, D. R. (1992). Role for c-myc in Activation-Induced Apoptotic Cell Death in T Cell Hybridomas. Nature 257:212–214.Google Scholar
  46. Shi, Y., Sahai, B. M., Green, D. R. (1989). Cyclosporin A inhibits activation-induced cell death in T cell hybridomas and thymocytes. Nature 339:625–626.PubMedCrossRefGoogle Scholar
  47. Shi, Y, Szalay, M. G., Paskar, L., Boyer, M., Singh, B., Green, D. R. (1990). Activation-induced cell death in T cell hybridomas is due to apoptosis. J. Immunol. 144:3326–3333.PubMedGoogle Scholar
  48. Singer, G. G., Abbas, A. K. (1994). The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1:365–371.PubMedCrossRefGoogle Scholar
  49. Smith, C. A., Williams, G. T., Kingston, R., Jenkinson, E. J., Owen, J. J. (1989). Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337:181–184.PubMedCrossRefGoogle Scholar
  50. Stuart, P. M., Griffith, T. S., Usui, N., Pepose, J., Yu, X., Ferguson, T. A. (1997). CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J. Clin. Invest., 99:396–402.PubMedCrossRefGoogle Scholar
  51. Suda, T., Okazaki, T., Naito, Y, Yokota, T., Arai, N., Ozaki, S., Nakao, K., Nagata, S. (1995). Expression of the Fas ligand in cells of T cell lineage. J. Immunol. 154:3806–3813.PubMedGoogle Scholar
  52. Sytwu, H. K., Liblau, R. S., McDevitt, H. O. (1996). The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 5:17–30.PubMedCrossRefGoogle Scholar
  53. Takahashi, T., Tanaka, M., Brannan, C. I., Jenkins, N. A., Copeland, N. G., Suda, T., Nagata, S. (1994). Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969–976.PubMedCrossRefGoogle Scholar
  54. Takahashi, T., Tanaka, M., Inazawa, J., Abe, T., Suda, T., Nagata, S. (1994). Human Fas ligand: gene structure, chromosomal location and species specificity. Int. Immunol. 6:1567–1574.PubMedCrossRefGoogle Scholar
  55. Trauth, B., Klas, C., Peters, A. M. J., Matzku, S., Moller, P., Falk, W., Debatin, K. M., Krammer, P. H. (1989). Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305.PubMedCrossRefGoogle Scholar
  56. Ucker, D. S., Ashwell, J. D., Nickas, G. (1989). Activation-driven T cell death. I. Requirements for de novo transcription and translation and association with genome fragmentation. J. Immunol. 143:3461–3469.PubMedGoogle Scholar
  57. Valentine, M. A., Licciardi, K. A. (1992). Rescue from anti-IgM-induced programmed cell death by the B cell surface proteins CD20 and CD40. Eur. J. Immunol. 22:3141–3148.Google Scholar
  58. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., Nagata, S. (1992). Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317.PubMedCrossRefGoogle Scholar
  59. Woronicz, J. D., Calnan, B., Ngo, V., Winoto, A. (1994). Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367:277–281.PubMedCrossRefGoogle Scholar
  60. Wurm, F. M., Gwinn, K. A., Kingston, R. E. (1986). Inducible overproduction of the mouse c-myc protein in mammalian cells. Proc. Natl. Acad. Sci. USA 83:5414–5418.PubMedCrossRefGoogle Scholar
  61. Wyllie, A. H., Rose, K. A., Morris, R. G., Steel, C. M., Foster, E., Spandidos, D. A. (1987). Rodent fibroblast tumours expressing human myc and ras genes: growth, metastasis and endogenous oncogene expression. Br. J.Cancer 56:251–259.PubMedCrossRefGoogle Scholar
  62. Yang, Y, Mercep, M., Ware, C. F., Ashwell, J. D. (1995). Fas and activation-induced Fas ligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression by retinoic acid and glucocorticoids. J. Exp. Med. 181:1673–1682.PubMedCrossRefGoogle Scholar
  63. Yao, S. L., McKenna, K. A., Sharkis, S. J., Bedi, A. (1996). Requirement of p34cdc2 kinase for apoptosis mediated by the Fas/APO-1 receptor and interleukin 1 beta-converting enzyme-related proteases. Cancer Res. 56:4551–4555.PubMedGoogle Scholar
  64. Yazdanbakhsh, K., Choi, J. W., Li, Y, Lau, L. F., Choi, Y (1995). Cyclosporin A blocks apoptosis by inhibiting the DNA binding activity of the transcription factor Nur77. Proc. Natl. Acad. Sci. USA92:437–441.PubMedCrossRefGoogle Scholar
  65. Yonehara, S., Ishii, A., Yonehara, M. (1989). A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169:1747–1756.PubMedCrossRefGoogle Scholar
  66. Zacharchuk, C. M., Mercep, M., Chakraborti, P. K., Simon, S. S., Ashwell, J. D. (1990). Programmed T lymphocyte death. Cell activation-and steroid-induced pathways are mutually antagonistic. J. Immunol. 145:4037–4045.PubMedGoogle Scholar
  67. Zacharchuk, C. M., Mercep, M., June, C. H., Weissman, A. M., Ashwell, J. D. (1991). Variations in thymocyte susceptibility to clonal deletion during ontogeny. Implications for neonatal tolerance. J. Immunol. 147:460–465.PubMedGoogle Scholar
  68. Zhang, X., Brunner, T., Carter, L., Dutton, R.W., Rogers, P., Sato, T., Reed, J., Green, D. R., Swain, S. L. (1997). Unequal death in Th1 and Th2 effectors: Th2 effectors express FAP-1 and are resistant to rapid activation induced cell death. J. Exp. Med. 185:1837–1849.PubMedCrossRefGoogle Scholar
  69. Zheng, L., Fisher, G., Miller, R. E., Peschon, J., Lynch, D. H., Lenardo, M. J. (1995). Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377:348–351.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Douglas R. Green
    • 1
  • Brian Tietz
    • 1
  • Thomas A. Ferguson
    • 2
  • Thomas Brunner
    • 1
  1. 1.Division of Cell. Immunol.La Jolla Institute for Allergy and ImmunologySan DiegoUSA
  2. 2.Department of OphthalmologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations