Stress Protein Gene Expression in Amphibians

  • John J. Heikkila
  • Adnan Ali
  • Nick Ohan
  • Ying Tam


Prokaryotic and eukaryotic organisms respond at the cellular level to environmental or chemical stressors such as elevated temperature, sodium arsenite, or exposure to heavy metals with the expression of a set of heat shock or stress protein (hsp) genes (reviewed by Nover, 1991; Parsell and Lindquist, 1993; Morimoto et al., 1994). A number of hsp gene family members are also expressed normally within the cell and appear to function as molecular chaperones and are involved in protein folding, assembly, and transport. hsp gene expression has also been correlated with the acquisition of thermotolerance. It is likely that during cellular stress hsps bind to and prevent irreversible aggregation or misfolding of damaged or denatured proteins. Therefore, this class of stress proteins is essential under normal growth conditions as well as serving to protect the cell from the adverse effects of stress.


Heat Shock Xenopus Laevis Xenopus Oocyte Heat Shock Response Heat Shock Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R., 1990, DNA methylation, the effect of minor bases on DNA-protein interactions. Biochem. J. 265: 309 - 320.PubMedGoogle Scholar
  2. Ali, A., Krone, P., and Heikkila, J. J., 1993, Expression of endogenous and microinjected hsp30 genes in early Xenopus laevis embryos, Dey. Genet. 14: 42 - 50.CrossRefGoogle Scholar
  3. Ali, A., Salter-Cid, L., Flajnik, M., and Heikkila, J. J., 1996a, Isolation and characterization of a cDNA encoding a Xenopus 70 kDa heat shock cognate protein, Hsc70.I, Comp. Biochem. Physiol. 113B: 681 - 687.CrossRefGoogle Scholar
  4. Ali, A., Krone, P. H., Pearson, D. S., and Heikkila, J. J., 1996b, Evaluation of stress-inducible hsp90 gene expression as a potential molecular biomarker in Xenopus laevis, Cell Stress Chaperones 1: 62 - 69.PubMedCrossRefGoogle Scholar
  5. Arrigo, A.-P. and Landry, J., 1994, Expression and function of the low-molecularweight heat shock proteins, in: The Biology of Heat Shock Proteins and Molecular Chaperones ( R. I. Morimoto, A. Tissieres, and C. Georgopoulos, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 335 - 373.Google Scholar
  6. Baltus, E., and Hanocq-Quertier, J., 1985, Heat shock response in Xenopus oo- cytes during meiotic maturation and activation, Cell Dyer. 16: 161 - 168.Google Scholar
  7. Barnier, J. V., Bensaude, O., Morange, M., and Babinet, C., 1987, Mouse 89 kDa heat shock protein: Two polypeptides with distinct developmental regulation, Exp. Cell Res. 170: 186 - 194.PubMedCrossRefGoogle Scholar
  8. Bienz, M., 1982, Expression of Drosophila heat shock protein in Xenopus oocytes: Conserved and divergent regulatory signals. EMBO J. 1: 1583 - 1588.Google Scholar
  9. Bienz, M., 1984a, Developmental control of the heat shock response in Xenopus, Proc. Nati Acad. Sci. USA 81: 3138 - 3142.CrossRefGoogle Scholar
  10. Bienz, M., 1984b, Xenopus hsp70 genes are constitutively expressed in injected oocytes, EMBO J. 3: 2477 - 2483.Google Scholar
  11. Bienz, M., 1986, A CCAAT box confers cell-type-specific regulation on the Xenopus hsp 70 gene in oocytes, Cell 46: 1037 - 1042.PubMedCrossRefGoogle Scholar
  12. Bienz, M., and Gurdon, J.B., 1982, The heat shock response in Xenopus oocytes is controlled at the translational level, Cell 29: 811 - 819.PubMedCrossRefGoogle Scholar
  13. Bienz, M., and Pelham, H. R. B., 1982, Expression of a Drosophila heat-shock protein in Xenopus oocytes: conserved and divergent regulatory signals. EMBO J. 1: 1583 - 1588.Google Scholar
  14. Billoud, B., Rodriguez-Martin, M.-L., Beerard, L., Moreau, N., and Angelier, N., 1993, Constitutive expression of a somatic heat-inducible hsp70 gene during amphibian oogenesis, Development 119: 921 - 932.PubMedGoogle Scholar
  15. Bond, U., and Schlesinger, M. J., 1985, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mot. Cell Biol. 5: 949 - 956.Google Scholar
  16. Brawerman, G., 1987, Determinants of messenger RNA stability, Cell 48:5-6. Browder, L. W., Pollock, M., Heikkila, J. J., Wilkes, J., Wang, T., Krone, P., Ovsenek, N., and Kloc, M., 1987, Decay of the oocyte-type heat shock response of Xenopus laevis, Dey. Biol. 124: 191 - 199.Google Scholar
  17. Carlone, R. L., and Fraser, G. A. D., 1989, An examination of heat shock and trauma-induced proteins in the regenerating forelimb of the newt, Notophthalmus viridescens, in: Recent Trends in Regeneration Research ( V. Kiotsis, S. Kovssoulakkos, and H. Wallace, eds.), Plenum Press, New York, pp. 17 - 25.CrossRefGoogle Scholar
  18. Carlone, R L., Boulianne, R. P., Vijh, K. M., Karn, H., and Fraser, G. A. D., 1993, Retinoic acid stimulates the synthesis of a novel heat shock protein in the regenerating forelimb of the newt, Biochem. Cell Biol. 71: 43 - 50.PubMedCrossRefGoogle Scholar
  19. Chen, P. S., and Stumm-Zollinger, E., 1986, Patterns of protein synthesis in oocytes and early embryos of Rana esculenta complex, Wilhelm, Roux Arch. Dey. Bioi. 195: 1 - 9.Google Scholar
  20. Cheney, C. M., and Shearn, A., 1983, Developmental regulation of Drosophila imaginal disc proteins: Synthesis of a heat shock protein under non-heatshock conditions, Dey. Biol. 95: 325 - 330.CrossRefGoogle Scholar
  21. Ciechanover, A., Finley, D., and Varshayski, A., 1984, The ubiquitin mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation, J. Cell Biochem. 24: 27 - 53.PubMedCrossRefGoogle Scholar
  22. Coumailleau, P., Billoud, B., Sourrouille, P., Moreau, N., and Angelier, N., 1995, Evidence for a 90 kDa heat-shock protein gene expression in the amphibian oocyte, Dey. Biol. 168: 247 - 258.CrossRefGoogle Scholar
  23. Currie, R. W., and White, F. P., 1981, Trauma-induced protein in rat tissues: A physiological role for a heat shock protein, Science 214: 72 - 73.PubMedCrossRefGoogle Scholar
  24. Dang, C. V., and Lee, W. M. F., 1989, Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins, J. Biol. Chem. 264: 18019 - 18023.PubMedGoogle Scholar
  25. Darasch, S., Mosser, D. D., Bols, N. C., and Heikkila, J. J., 1988, Heat shock gene expression in Xenopus laevis A6 cells in response to heat shock and sodium arsenite treatments, Biochem. Cell Biol. 66: 862 - 868.PubMedCrossRefGoogle Scholar
  26. Davis, R. E., and King, M. L., 1989, The developmental expression of the heat-shock response in Xenopus laevis, Development 105: 213 - 222.PubMedGoogle Scholar
  27. Dixon, D. K., Jones, D., and Candido, E. P., 1990, The differentially expressed 16kD heat shock genes of Caenorhabditis elegans exhibit differential changes in chromatin structure during heat shock, DNA Cell Biol. 9: 177 - 191.Google Scholar
  28. Duval, C., Bouvet, P., Omilli, F., Roghi, C., Dorel, C., LeGuellec, R., Paris, J., and Osborne, H. B., 1990, Stability of maternal mRNA in Xenopus embryos: Role of transcription and translation, MoL Cell Biol. 10: 4123 - 4129.PubMedGoogle Scholar
  29. Dworkin-Rastl, E., Shrutkowski, A., and Dworkin, M. B., 1984, Multiple ubiquitin mRNAs during Xenopus laevis development contain tandem repeats of 76 amino acid coding sequence, Cell 39: 321 - 325.PubMedCrossRefGoogle Scholar
  30. Easton, D. P., Rutledge, P. S., and Spotila, J. R., 1987, Heat shock protein induction and induced thermal tolerance are independent in adult salamanders, J. Exp. Zool. 241: 263 - 267.PubMedCrossRefGoogle Scholar
  31. Edbladh, M., Ekstrom, P. A. R., and Edstrom, A., 1994, Retrograde axonal transport of locally synthesized proteins, e.g., actin and heat shock protein 70, in regenerating adult frog sciatic sensory axons, J. Neurosci. Res. 38: 424 - 432.PubMedCrossRefGoogle Scholar
  32. Edington, B. V., and Hightower, L. E., 1990, Induction of a chicken small heat shock (stress) protein. Evidence of multilevel posttranscriptional regulation, Mol. Cell Biol. 10: 4886 - 4898.PubMedGoogle Scholar
  33. Freeman, B. C., Myers, M. P., Schumacher, R., and Morimoto, R. I., 1995, Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1, EMBO J. 14: 2281 - 2292.Google Scholar
  34. Gething, M.-J., Blond-Egluindi, S., Mori, K., and Sambrook, J. F., 1994, Structure, function, and regulation of the endoplasmic reticulum chaperone, BiP, in: The Biology of Heat Shock Proteins and Molecular Chaperones ( R. I. Morimoto, A. Tissieres, and C. Georgopoulos, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 111 - 135.Google Scholar
  35. Goldenberg, C. J., Luo, Y., Fenna, M., Baler, R, Weinmann, R, and Voellmy, R., 1988, Purified human factor activates heat shock promoter in a HeLa cell-free transcription system, J. Biol. Chem. 263: 19734 - 19739.PubMedGoogle Scholar
  36. Gunther, E., and Walter, L., 1994, Genetic aspects of the hsp70 multigene family in vertebrates, Experientia 50: 987 - 1001.PubMedCrossRefGoogle Scholar
  37. Heikkila, J. J., 1993a, Heat shock gene expression and development. I. An overview of fungal, plant, and poikilothermic animal developmental systems, Dev. Genet. 14:1-5.Google Scholar
  38. Heikkila, J. J., 1993b, Heat shock gene expression and development. II. An overview of mammalian and avian developmental systems, Dev. Genet. 14:87-91.Google Scholar
  39. Heikkila, J. J., and Schultz, G. A., 1984, Different environmental stresses can activate the expression of a heat shock gene in rabbit blastocyst, Gamete Res. 10:45-56.Google Scholar
  40. Heikkila, J. J., Kloc, M., Bury, J., Schultz, G. A., and Browder, L. W., 1985, Acquisition of the heat shock response and thermotolerance during early development of Xenopus laevis, Dev. Biol. 107:483-489.Google Scholar
  41. Heikkila, J J, Darasch, S. P., Mosser, D. D., and Bols, N. C., 1986, Heat and sodium arsenite act synergistically on the induction of heat shock gene expression in Xenopus laevis A6 cells, Biochem. Cell Biol. 65: 310 - 316.CrossRefGoogle Scholar
  42. Heikkila, J J, Ovsenek, N., and Krone, P. H., 1987, Examination of heat shock protein mRNA accumulation in early Xenopus laevis embryos, Biochem. Cell Biol. 65: 87 - 94.PubMedCrossRefGoogle Scholar
  43. Helbing, C., Gallimore, C., and Atkinson, B. G., 1996, Characterization of a Rana catesbeiana hsp30 gene and its expression in the liver of this amphibian during both spontaneous and thyroid hormone-induced metamorphosis, Dev. Genet. 18: 223 - 233.Google Scholar
  44. Herberts, C., Moreau, N., and Angelier, N., 1993, Immunolocalization of hsp70related proteins constitutively expressed during Xenopus laevis oogenesis and development, Int. J. Dev. Biol. 37: 397 - 406.PubMedGoogle Scholar
  45. Hockertz, M. K., Clark-Lewis, I., and Candido, E. P. M., 1991, Studies of the small heat shock proteins of Caenorhabditis elegans using anti-peptide antibodies, FEBS Lett. 280: 375 - 378.PubMedCrossRefGoogle Scholar
  46. Horrell, A., Shuttieworth, J., and Colman, A., 1987, Transcript levels and translational control of hsp 70 synthesis in Xenopus oocytes, Genes Dev. 1: 433 - 444.PubMedCrossRefGoogle Scholar
  47. Ingolia, T. D., and Craig, E. A., 1982, Four small Drosophila heat shock proteins are related to each other and to mammalian a-crystallin, Proc. Natl. Acad. Sci. USA 79: 2360 - 2364.PubMedCrossRefGoogle Scholar
  48. Kam, H., Ovsenek, N., and Heikkila, J J, 1992, Properties of heat shock transcription factor in Xenopus embryos, Biochem. Cell Biol. 70: 1006 - 1013.CrossRefGoogle Scholar
  49. Ketola-Pirie, C. A., and Atkinson, B. G., 1983, Cold-and heat-shock induction of new gene expression in cultured amphibian cells, Can. J. Biochem. Cell Biol. 61: 462 - 471.CrossRefGoogle Scholar
  50. Kimelman, D., Kirschner, M., and Scherson, T., 1987, The events of the mid-blastula transition in Xenopus are regulated by changes in the cell cycle, Cell 48: 399 - 407.PubMedCrossRefGoogle Scholar
  51. King, M. L., and Davis, R. E., 1987, Do Xenopus oocytes have a heat shock response? Dev. BioL 119: 532 - 539.PubMedCrossRefGoogle Scholar
  52. Krone, P. H., and Heikkila, J. J., 1988, Analysis of hsp 30, hsp 70, and ubiquitin gene expression in Xenopus laevis tadpoles, Development 103: 59 - 67.PubMedGoogle Scholar
  53. Krone, P. H., and Heikkila, J. J., 1989, Expression of microinjected hsp70/CAT and hsp30/CAT chimeric genes in developing Xenopus laevis embryos, Development 106: 271 - 281.PubMedGoogle Scholar
  54. Krone, P. H., Snow, A., Ali, A., Pasternak, J. J., and Heikkila, J. J., 1992, Comparison of the regulatory regions of the Xenopus laevis small heat-shock protein encoding gene family, Gene 110: 159 - 166.PubMedCrossRefGoogle Scholar
  55. Landsberger, N., and Wolffe, A. P., 1995, Role of chromatin and Xenopus laevis heat shock transcription factor in regulation of transcription from the X. laevis hsp70 promoter in vivo, Mol. Cell. Biol. 15: 6013 - 6024.PubMedGoogle Scholar
  56. Landsberger, N., Ranjan, M., Almouzni, G., Stump, D., and Wolffe, A. P., 1995, The heat shock response in Xenopus oocytes, embryos and somatic cells: A regulatory role for chromatin, Dey. Biol. 170: 62 - 74.CrossRefGoogle Scholar
  57. Lee, A. S., 1992, Mammalian stress response: Induction of the glucose-regulated protein, Cuit Opin. Cell Biol. 4: 267 - 273.CrossRefGoogle Scholar
  58. Legagneux, V., Mezger, V., Quelard, C., Barnier, J. V., Bensaude, O., and Morange, M., 1989, High constitutive transcription of hsp86 gene in murine carcinoma cells, Differentiation 41: 42 - 48.PubMedCrossRefGoogle Scholar
  59. Lowrey, C. H., Bodine, D. M., and Nienhuis, A. W., 1992, Mechanisms of DNase I hypersensitive site formation within the human globin locus control region, Proc. Natl. Acad. Sci. USA 89: 1143 - 1147.PubMedCrossRefGoogle Scholar
  60. Mandell, R. B., and Feldherr, C. M., 1992, The effect of carboxyl-terminal deletions on the nuclear transport rate of rat hsc70, Exp. Cell Res. 198: 164 - 169.PubMedCrossRefGoogle Scholar
  61. Marin, R., Valet, J. P., andTanguay, R. M., 1993, Hsp 23 and hsp 26 exhibit distinct spatial and temporal patterns of constitutive expression in Drosophila adults, Dey. Genet. 14: 69 - 77.CrossRefGoogle Scholar
  62. Marsden, M., Nickells, R. W., Kapoor, M., and Browder, L. W., 1993, The induction of pyruvate kinase synthesis by heat shock in Xenopus laevis embryos, Dey. Genet. 14: 51 - 57.CrossRefGoogle Scholar
  63. McGrew, L. L., Dworkin-Rastl, E., Dworkin, M., and Richter, J. D., 1989, Poly (A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element, Genes Dey. 3: 803 - 815.CrossRefGoogle Scholar
  64. Mifflin, L. C., and Cohen, R. E., 1994, Hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers, J. Biol. Chem. 269: 15718 - 15723.PubMedGoogle Scholar
  65. Mohun, T. J., Garret, N., and Gurdon, J., 1989, Temporal and tissue-specific expression of the proto-oncogene c fos during development in Xenopus laevis, Development 107: 835 - 846.PubMedGoogle Scholar
  66. Morimoto, R. I., Tissieres, A., and Georgopoulos, C. (eds.), 1994, The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  67. Nanbu, R., Menoud, P.-A., and Nagamine, Y., 1994, Multiple instability-regulating sites in the 3’ untranslated region of the urokinase-type plasminogen activator mRNA, Mol. Cell Biol. 14: 4920 - 4928.PubMedGoogle Scholar
  68. Near, J. C., Easton, D. P., Rutledge, P. S., Dickinson, D. P., and Spotila, J. R., 1990, Heat shock protein 70 gene expression in intact salamanders (Eurycea bislineata) in response to calibrated heat shocks and to high temperatures encountered in the field, J. Exp. Zool. 256: 303 - 314.CrossRefGoogle Scholar
  69. Newport, J., and Kirschner, M., 1982a, A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage, Cell 30: 675 - 686.PubMedCrossRefGoogle Scholar
  70. Newport, J., and Kirschner, M., 1982b, A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription, Cell 30: 687 - 696.PubMedCrossRefGoogle Scholar
  71. Nickells, R. W., and Browder, L. W., 1985, Region-specific heat-shock protein synthesis correlates with a biphasic acquisition of thermotolerance in Xenopus laevis embryos, Dey. Biol. 112: 391 - 395.CrossRefGoogle Scholar
  72. Nickells, R. W., and Browder, L. W., 1988, A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos, J. Cell Biol. 107: 1901 - 1909.PubMedCrossRefGoogle Scholar
  73. Nover, L., 1991, The Heat Shock Response, CRC Press, Boca Raton, FL.Google Scholar
  74. Ohan, N. W., and Heikkila, J. J., 1995, Involvement of differential gene expression and messenger RNA stability in the developmental regulation of the Hsp30 gene family in heat shocked Xenopus laevis embryos, Dey. Genet. 17: 176 - 184.CrossRefGoogle Scholar
  75. Ovsenek, N., and Heikkila, J. J., 1988, Heat shock induced accumulation of ubiquitin mRNA in Xenopus laevis is developmentally regulated, Dey. Biol. 12: 582 - 585.CrossRefGoogle Scholar
  76. Ovsenek, N., and Heikkila, J. J., 1990, DNA sequence-specific binding activity of the heat-shock transcription factor is heat inducible before the midblastula transition of early Xenopus development, Development 110: 427 - 433.PubMedGoogle Scholar
  77. Ovsenek, N., Williams, G. T., Morimoto, R. I., and Heikkila, J. J., 1990, Cis-acting sequences and trans-acting factors required for constitutive expression of a microinjected HSP70 gene after the midblastula transition of Xenopus laevis embryogenesis, Dey. Genet. 11: 97 - 109.CrossRefGoogle Scholar
  78. Ozkaynak, E., Finley, D., Solomon, M. J., and Varshaysky, A., 1987, The yeast ubiquitin genes: A family of natural gene fusions, EMBO J. 6: 1429 - 1439.Google Scholar
  79. Parsell, D. A., and Lindquist, S., 1993, The function of heat shock proteins in stress tolerance: Degradation and reactivation of the damaged proteins, Annu. Rev. Genet. 27: 437 - 496.CrossRefGoogle Scholar
  80. Petersen, R. B., and Lindquist, S., 1989, Regulation of hsp 70 synthesis by messenger RNA degradation, Cell Regul. 1: 135 - 149.PubMedGoogle Scholar
  81. Rensing, S. A., and Maier, U. G., 1994, Phylogenetic analysis of the stress-70 protein family, J. MoL Evol. 39: 80 - 86.Google Scholar
  82. Rojas, C., and Allende, J. E., 1983, Amphibian oocytes respond to heat shock after the induction of meiotic maturation by hormones, Biochem. Int. 6: 517 - 525.PubMedGoogle Scholar
  83. Rutledge, P. S., Easton, D. P., and Spotila, J. R., 1987, Heat shock proteins from the lungless salamanders Eurycea bislineata and Desmognathus ochrophaeus, Comp. Biochem. Physiol. 88B: 13 - 18.Google Scholar
  84. Ryan, J. A., and Hightower, L. E., 1994, Evaluation of heavy-metal ion toxicity in fish cells using a combined stress protein and cytotoxicity assay, Environ. Toxicol. Chem. 13: 1231 - 1240.CrossRefGoogle Scholar
  85. Saines, I., Angelidis, C., Pagoulatos, G., and Lazaridis, I., 1994, The hsc70 gene which is slightly induced by heat is the main virus inducible member of the hsp70 gene family. FEBS Letters 355: 282 - 286.CrossRefGoogle Scholar
  86. Salter-Cid, L., Kasahara, M. and Flajnik, M. F., 1994, Hsp70 genes are linked to the Xenopus major histocompatibility complex, Immunogenetics 39: 1 - 7.PubMedCrossRefGoogle Scholar
  87. Sheu, J.-J., Jan, S.-P., Lee, H.-T., and Yu, S.-M., 1994, Control of transcription and mRNA turnover as mechanisms of metabolic repression of alpha-amylase gene expression, Plant J. 5: 655 - 664.CrossRefGoogle Scholar
  88. Stump, D. G., Landsberger, N., and Wolffe, A. P., 1995, The cDNA encoding Xenopus laevis heat-shock factor 1 (XHSF1): Nucleotide and deduced amino-acid sequences, and properties of the encoded protein, Gene 160: 207 - 211.PubMedCrossRefGoogle Scholar
  89. Tam, Y., and Heikkila, J. J., 1995, Identification of members of the hsp30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos, Dey. Genet. 17: 331 - 339.CrossRefGoogle Scholar
  90. Tam, Y., Vethamany-Globus, S., and Globus, M., 1992, Limb amputation and heat shock induce changes in protein expression in the newt, Notophthalmus yiridescens, J. Exp. Zool. 264: 64 - 74.CrossRefGoogle Scholar
  91. Uzawa, M., Grams, J., Madden, B., Toft, D., and Salisbury, J. L., 1995, Identification of a complex between heat shock proteins in CSF-arrested Xenopus oocytes and dissociation of the complex following oocyte activation, Dey. Biol. 171: 51 - 59.CrossRefGoogle Scholar
  92. Vezina, C., Wooden, S. K., Lee, A. S., and Heikkila, J. J., 1994, Constitutive expression of a microinjected glucose-regulated protein (grp78) fusion gene during early Xenopus laevis development, Differentiation 57: 171 - 177.PubMedCrossRefGoogle Scholar
  93. Voellmy, R, and Rungger, D., 1982, Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 79: 1776 - 1780.PubMedCrossRefGoogle Scholar
  94. White, C. N., Hightower, L. E., and Schultz, R. J., 1994, Variation in heat-shock proteins among species of desert fishes (Poeciliidae, Poeciliopsis), Mol. Biol. Evol. 11: 106 - 119.PubMedGoogle Scholar
  95. Winning, R. S., Heikkila, J. J., and Bols, N. C., 1989, Induction of glucose-regulated proteins in Xenopus laevis A6 cells, J. Cell. Physiol. 140: 239 - 245.PubMedCrossRefGoogle Scholar
  96. Winning, R. S., Bols, N. C., and Heikkila, J. J., 1991, Tunicamycin-inducible polypeptide synthesis during Xenopus laevis embryogenesis, Differentiation 46: 167 - 172.PubMedCrossRefGoogle Scholar
  97. Winning, R. S., Bols, N. C., Wooden, S. K., Lee, A. S., and Heikkila, J. J., 1992, Analysis of the expression of a glucose-regulated protein (GRP78) promoter/ CAT fusion gene during early Xenopus laevis development, Differentiation 49: 1 - 6.PubMedCrossRefGoogle Scholar
  98. Wolfe, A. P., Glover, J. F., and Tata, J. R., 1984, Culture shock: Synthesis of heatshock-like proteins in fresh primary cell cultures, Exp. Cell Res. 154: 581 - 590.CrossRefGoogle Scholar
  99. Yu, Z., Magee, W. E., and Spotila, J. R., 1994, Monoclonal antibody ELISA test indicates that large amounts of constitutive hsp-70 are present in salamanders, turtle and fish, J. Therm. Biol. 19: 41 - 53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • John J. Heikkila
    • 1
  • Adnan Ali
    • 1
  • Nick Ohan
    • 1
  • Ying Tam
    • 1
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations