Skip to main content
  • 60 Accesses

Abstract

The environmental stresses (e.g., pollution, radiation, and chemicals) increase in the modern society. Various kinds of stress attack all living organisms. All organisms appear to have innate ability to overcome these stresses (sometimes threats) for survival. Their sensitivity and responses, however, are varied, depending on the organism and on the developmental stage, age, tissue, and cell. Immune and inflammation reactions also play important roles in the processes in which organisms recover from the stress and rescue themselves (for reviews, see Cociancich et al., 1994; Hultmark, 1993; Wilder, 1995). When organisms are exposed to above the threshold threats, they either die or survive with severe damage. The survivors, lucky as it may sound, must undergo sustained agonies. Further, the damage in their DNA, either in eggs or spermatozoa, may result in the appearance of mutated or aberrant progeny. An increasingly large number of people recognize such stresses as a serious problem for the society and for all living organisms. Thus, a worldwide campaign to keep the earth clean and safe has been boosted. Accordingly, the stress and stress-response have emerged recently as an important topic in cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaboshi, E., and Howard-Flanders, P., 1989, Proteins induced by DNA-damaging agents in cultured Drosophila cells, Mutat. Res. 227: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Akaboshi, E., Inoue, Y., and Ryo, H., 1994a, Cloning of the cDNA and genomic DNA that correspond to the recA-like gene of Drosophila melanogaster, Jpn. J. Genet. 69: 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Akaboshi, E., Inoue, Y., Ryo, H., and Yamamoto, M. T., 1994b, Cloning and mapping of genes activated by MMS treatment in Drosophila cultured cells, Dros. Inf. Serv. 75: 149.

    Google Scholar 

  • Amin, J., Ananthan, J., and Voellmy, R., 1988, Key features of heat shock regulatory elements, Moi. Cell. Biol. 8: 3761–3769.

    CAS  Google Scholar 

  • Ashburner, M., and Bonner, J. J., 1979, The induction of gene activity in Drosophila by heat shock, Cell 17: 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, D. K., Park, D., Xu, L., and Kleckner, N., 1992, DMC1: A meiosis-specific yeast homolog of E. coil recA required for recombination, synaptonemal complex formation, and cell cycle progression, Cell 69: 439–456.

    CAS  Google Scholar 

  • Bohr, V. A., Evans, M. K., and Fornace, A. J., Jr., 1989, Biology of disease: DNA repair and its pathogenetic implications, Lab. Invest. 61: 143–161.

    PubMed  CAS  Google Scholar 

  • Carrier, F., Gatignol, A., Hollander, M. C., Jeang, K.-T., and Fornace, A. J., Jr., 1994, Induction of RNA-binding proteins in mammalian cells by DNA-damaging agents, Proc. Natl. Acad. Sci. USA 91: 1554–1558.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.-Y., Oliner, J. D., Zhan, Q., Fornace, A. J., Jr., and Vogelstein, B., 1994, Interactions between p53 and MDM2 in a mammalian cell cycle, Proc. Natl. Acad. Sci. USA 91: 2684–2688.

    Article  PubMed  CAS  Google Scholar 

  • Cociancich, S., Bulet, P., Hetru, C., and Hoffmann, J. A., 1994, The inducible antibacterial peptides of insects, ParasitoL Today 10: 132–139.

    Article  CAS  Google Scholar 

  • Doige, C. A., and Ames, G. F.-L., 1993, ATP-dependent transport systems in bacteria and humans: Relevance to cystic fibrosis and multidrug resistance, Annu. Rev. Microbiol. 47: 291–319.

    Article  CAS  Google Scholar 

  • Ellis, R. J., 1993, The general concept of molecular chaperones, Philos. Trans. R. Soc. London Ser. B 339: 257–261.

    Article  CAS  Google Scholar 

  • Engels, W. R., Preston, C. R., Thompson, P., and Eggleston, W. B., 1986, In situ hybridization to Drosophila salivary chromosomes with biotinylated DNA probes and alkaline phosphatase, Focus 8: 6–8.

    Google Scholar 

  • Finley, D., and Chau, V., 1991, Ubiquitination, Annu. Rev. Cell Biol. 7: 25–69.

    Article  CAS  Google Scholar 

  • Fornace, A. J., Jr., 1992, Mammalian genes induced by radiation; activation of genes associated with growth control, Annu. Rev. Genet. 26: 507–526.

    Article  CAS  Google Scholar 

  • Friedberg, E. C., 1988, Deoxyribonucleic acid repair in the yeast, Microbiol. Rev. 52: 70–102.

    PubMed  CAS  Google Scholar 

  • Hendrick, J. P., and Hartl, F.-U., 1993, Molecular chaperone functions of heat-shock proteins, Annu. Rev. Biochem. 62: 349–384.

    Article  CAS  Google Scholar 

  • Herrlich, P., Ponta, H., and Rahmsdorf, H. J., 1992, DNA damage-induced gene expression: Signal transduction and relation to growth factor signaling, Rev. Physiol. Biochem. Pharmacol. 119: 187–223.

    PubMed  CAS  Google Scholar 

  • Hultmark, D., 1993, Immune reactions in Drosophila and other insects: A model for innate immunity, Trends Genet. 9: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Ip, Y. T., Kraut, R, Levine, M., and Rushlow, C. A., 1991, The dorsal morphogen is a sequence-specific DNA-binding protein that interacts with a long-range repression element in Drosophila., Cell 64: 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Ip, Y. T., Reach, M., Engstrom, Y., Kadalayil, L., Cai, H., Gonzalez-Crespo, S., Tatei, K., and Levine, M., 1993, Dif, a dorsal-related gene that mediates an immune response in Drosophila, Cell 75: 753–763.

    CAS  Google Scholar 

  • Kelley, P. M., and Schlesinger, M. J., 1978, The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts, Cell 15: 1277–1286.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Simon, J. A., and Lis, J. T., 1988, Structure and expression of ubiquitin genes of Drosophila melanogaster, Mol. Cell. Biol. 8: 4727–4735.

    PubMed  CAS  Google Scholar 

  • Lemaitre, B., Meister, M., Govind, S., Georgel, P., Steward, S., Reichhart, J.-M., and Hoffmann, J. A., 1995, Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila, EMBO J. 14: 536–545.

    Google Scholar 

  • Lindquist, S., 1986, The heat-shock response, Annu. Rev. Biochem, 55: 1151–1191.

    Article  CAS  Google Scholar 

  • Lindsley, D. L., and Zimm, G. G., 1992, The Genome of Drosophila melanogaster, Academic Press, San Diego.

    Google Scholar 

  • Lommel, L., Carswell-Crumpton, C., and Hanawalt, P. C., 1995, Preferential repair of the transcribed DNA strand in the dihydrofolate reductase gene throughout the cell cycle in UV-irradiated human cells, Mutat. Res. 336: 181–192.

    CAS  Google Scholar 

  • Love, J. D., Vivino, A. A., and Minton, K. W., 1986, Hydrogen peroxide toxicity may be enhanced by heat shock gene induction in Drosophila, J. Cell. Physiol. 126: 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Modrich, P., 1991, Mechanisms and biological effects of mismatch repair, Annu. Rev. Genet. 25: 229–253.

    Article  CAS  Google Scholar 

  • Nover, L., 1991, Structure of eukaryotic heat shock genes, in: Heat Shock Response ( L. Nover, ed.), CRC Press, Boca Raton, FL, pp. 129–150.

    Google Scholar 

  • Papathanasiou, M. A., Kerr, N. C. K., Robbins, J. H., McBride, O. W., Alamo, I., Jr., Barrett, S. F., Hickson, I. D., and Fornace, A. J., Jr., 1991, Induction by ionizing radiation of the gnrid45 gene in cultured human cells: lack of mediation by protein kinase C, Mol. Cell. Biol. 11: 1009–1016.

    PubMed  CAS  Google Scholar 

  • Parsell, D. A., and Lindquist, S., 1993, The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins, Annu. Rev. Genet. 27: 437–496.

    Article  CAS  Google Scholar 

  • Pelham, H. R. B., 1986, Speculations on the functions of the major heat shock and glucose-regulated proteins, Cell 46: 959–961.

    Article  PubMed  CAS  Google Scholar 

  • Prakash, S., Sung, P., and Prakash, L., 1993, DNA repair genes and proteins of Saccharomyces cerevisiae, Annu. Rev. Genet. 27: 33–70.

    Article  PubMed  CAS  Google Scholar 

  • Price, B. D., and Park, S. J., 1994, DNA damage increases the levels of MDM2 messenger RNA in wtp53 human cells, Cancer Res. 54: 896–899.

    PubMed  CAS  Google Scholar 

  • Ritossa, F., 1962, A new puffing pattern induced by a temperature shock and DNP in Drosophila, Experientia 18: 571–573.

    Article  CAS  Google Scholar 

  • Schmitz, M. L., Henkel, T., and Baeuerle, P. A., 1991, Proteins controlling the nuclear uptake of NF-KB, rel and dorsal, Trends Cell BioL 1: 130–137.

    Article  PubMed  CAS  Google Scholar 

  • Sferra, T. J., and Collins, F. S., 1993, The molecular biology of cystic fibrosis, Annu. Rev. Med. 44: 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara, A., Ogawa, H., and Ogawa, T., 1992, Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein, Cell 69: 457–470.

    Article  PubMed  CAS  Google Scholar 

  • Siebenlist, U., Franzoso, G., and Brown, K., 1994, Structure, regulation and function of NF-KB, Annu. Rev. Cell BioL 10: 405–455.

    Article  CAS  Google Scholar 

  • Steward, R, and Govind, S., 1993, Dorsal-ventral polarity in the Drosophila embryo, Carr. Opin. Genet. Dey. 3: 556–561.

    CAS  Google Scholar 

  • Tchurikov, N. A., Ebralidze, A. K., and Georgiev, G. P., 1986, The suffix sequence is involved in processing the 3’ ends of different mRNAs in Drosophila melanogaster, EMBO J. 5: 2341–2347.

    Google Scholar 

  • Tomasovic, S. P., and Koval, T. M., 1985, Relationship between cell survival and heat-stress protein synthesis in a Drosophila cell line, Int. J. Radiat. Biol 48: 635–650.

    CAS  Google Scholar 

  • Toung, Y.-P. S., Hsieh, T.-S., and Tu, C.-P. D., 1990, Drosophila glutathione 5-transferase 1–1 shares a region of sequence homology with the maize glutathione S-transferase III, Proc. Natl. Acad. Sci. USA 87: 31–35.

    Google Scholar 

  • Toung, Y.-P. S., Hsieh, T.-S., and Tu, C.-P. D., 1993, The glutathione S-transferase D genes. A divergently organized, intronless gene family in Drosophila melanogaster, J. BioL Chem. 268: 9737–9746.

    PubMed  CAS  Google Scholar 

  • Tsuchida, S., and Sato. K., 1992, Glutathione transferases and cancer, Crit. Rev. Biochem. Moi. Biol. 27: 337–384.

    Article  CAS  Google Scholar 

  • Walker, G. C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol. Rev. 48: 60–93.

    PubMed  CAS  Google Scholar 

  • Welcher, A. A., Torres, A. R., and Ward, D. C., 1986, Selective enrichment of specific DNA, cDNA and RNA sequences using biotinylated probes, avidin and copperchelate agarose, Nucleic Acids Res. 14: 10027–10044.

    Article  PubMed  CAS  Google Scholar 

  • Wilder, R. L., 1995, Neuroendocrine-immune system interactions and auto-immunity, Anna. Rev. ImmunoL 13: 307–338.

    Article  CAS  Google Scholar 

  • Xiao, H., and Lis, J. T., 1988, Germline transformation used to define key features of heat-shock response elements, Science 239: 1139–1142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akaboshi, E., Inoue, Y. (1997). Stress Responses in Drosophila Cells. In: Koval, T.M. (eds) Stress-Inducible Processes in Higher Eukaryotic Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0069-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0069-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0071-5

  • Online ISBN: 978-1-4899-0069-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics