A Single Treatment with Adjuvant Stimulates Th1-Like Cytokines and Downregulates Th2-Mediated Primary and Secondary Allergic Responses

  • Dorothy E. Scott
  • Basil Golding
Part of the NATO ASI Series book series (NSSA, volume 293)


CD4+ T cells play a central role in most effective immune responses to antigens and pathogens. Since the phenotype of CD4+ T cells induced defines the nature of the subsequent immune response, designing vaccines which favor the appropriate T cell subset is of critical importance. Two subsets of mature Th cells, Th1 and Th2, have been distinguished based upon the pattern of cytokines they produce (Mosmann and Coffman, 1989; Brown et al., 1989). Antigen-presenting cells (APC), which first contact and process antigens, present them to naive “Th0” cells in the context of certain cytokines and costimulatory signals. The microenvironment encountered by naive Th0 cells in conjuction with antigens influences their development towards a Thl or Th2 direction. In particular, IL-12, IFN-γ and IFN-α favor Th1 cell development, whereas IL-4 promotes differentiation into Th2 cells (Swain, 1993; Hsieh et al, 1993a; Seder et al., 1993; Brinkmann et al., 1993; Wenner et al., 1996). Differentiated, antigen-specific Thl cells produce IFN-γ, IL-2 and TNF-6 (Abbas et al., 1996). Th1 cells promote DTH and complement-fixing, IgG2a antibody production in mice, while the Th2 subset promotes the formation of IgG1 and allergy-mediating IgE antibodies in mice (Finkelman et al., 1990; Snapper and Paul, 1987; Finkelman et al., 1988b; Finkelman et al., 1988a; Finkelman et al, 1986). Evidence for Thl and Th2-like populations exists in human diseases such as leprosy, leishmaniasis, HIV (progression), atopy, and asthma (Secrist et al., 1993; Parronchi et al, 1991; Clerici and Shearer, 1993; Yamamura et al., 1991; Heinzel et al., 1991). Thl and Th2 subsets produce factors which enhance their own development and downregulate each other’s activity (Maggi et al., 1992; Powrie and Coffman, 1993; Schmitt et al., 1994; Swain et al, 1991; Tanaka et al., 1993).


Cytokine mRNA Lepromatous Leprosy IgG2a Antibody Brucella Abortus Passive Cutaneous Anaphylaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, A.K., Murphy, K.M. and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature, 383: 787.PubMedCrossRefGoogle Scholar
  2. Aldovini, A. and Young, R.A., 1991. Humoral and cell-mediated responses to live recombinant BCG-HIV vaccines. Nature. 351: 479.PubMedCrossRefGoogle Scholar
  3. Berg, D.J., Kuhn, R., Rajewsky, K., Müller, W., Menon, S., Davidson, N., Grunig, G. and Rennick, D., 1995. Interleukin-10 is a central regulator of the responses to LPS in murine models of endotoxic shock and the Schwartzman reaction but not endotoxin tolerance. J.Clin.Invest., 96: 2339.PubMedCrossRefGoogle Scholar
  4. Blay, R., Hernandez, D., Betts, M., Clerici, M., Lucey, D., Hendrix, C., Hoffman, T. and Golding, B., 1992. Brucella abortus stimulates human T cells from uninfected and infected individuals to secrete IFNg. AIDS Research and Human Retroviruses. 8: 479.PubMedCrossRefGoogle Scholar
  5. Brinkmann, V., Geiger, T., Alkan, S. and Heusser, C.H., 1993. Interferon alpha increases the frequency of interferon-gamma producing human CD4+ T cells. J.Exp.Med., 178: 1655.PubMedCrossRefGoogle Scholar
  6. Brown, K.D., Zurawski, S.M., Mosmann, T.R. and Zurawski, G., 1989. A family of small inducible proteins secreted by leukocytes are members of a new superfamily that includes leukocyte and fibroblast-derived inflammatory agents, growth factors, and indicators of various activation processes. J.Immunol., 142: 679.PubMedGoogle Scholar
  7. Clerici, M. and Shearer, G.M., 1993. A Th1 to Th2 switch is a critical step in the etiology of HIV infection. Immunol.Today. 14: 107.PubMedCrossRefGoogle Scholar
  8. Dalton, D., Pitts-Meek, S., Keshav, S., Figari, I.S., Bradley, A. and Stewart, T.A., 1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 259: 1739.PubMedCrossRefGoogle Scholar
  9. de Waal-Malefyt, R., Abrams, J., Bennett, B., Figdor, C.G. and de Vries, J., 1991. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med., 174: 1209.PubMedCrossRefGoogle Scholar
  10. Ezernieks, J., Schnarr, B., Metz, K. and Duschl, A., 1996. The human IgE germline promoter is regulated by interleukin-4, interleukin-13, interferon-alpha and interferon-gamma via an interferon-gamma activated site and its flanking regions. Eur.J.Biochem., 240: 667.PubMedCrossRefGoogle Scholar
  11. Finkelman, F.D., Katona, I.M., Urban, J.F., Jr., Snapper, CM., Ohara, J. and Paul, W.E., 1986. Suppression of in vivo polyclonal IgE responses by monoclonal antibody to the lymphokine BSF-1. Proc.Natl.Acad.Sci. USA. 83: 9675.PubMedCrossRefGoogle Scholar
  12. Finkelman, F.D., Katona, I.M., Mosmann, T.R. and Coffman, R.L,. 1988a. IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. Journal of Immunology. 140: 1022.Google Scholar
  13. Finkelman, F.D., Katona, I.M., Urban, J.F., Jr., Holmes, J., Ohara, J., Tung, A.S., Sample, J.V. and Paul, W.E., 1988b. IL-4 is required to generate and sustain in vivo IgE responses. Journal of Immunology, 141: 2335.Google Scholar
  14. Finkelman, F.D., Holmes, J., Katona, I.M., Urban, J.F., Jr., Beckman, M.P., Schooley, K.A., Coffman, R.L., Mosmann, T.R. and Paul, W.E., 1990. Lymphokine control of in vivo immunoglobulin isotype selection. Annu.Rev.Immunol., 8: 303.PubMedCrossRefGoogle Scholar
  15. Fiorentino, D.F., Zlotnik, A., Mosmann, T.R., Howard, M. and O’Garra, A., 1991. IL-10 inhibits cytokine production by activated macrophages. J.Immunol., 147: 3815.PubMedGoogle Scholar
  16. Gause, W.C. and Adamovicz, J., 1994. in: “PCR Methods and Applications” (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory).Google Scholar
  17. Gieni, R.S., Yang, X. and Hayglass, K.T., 1993. Allergen-specific modulation of cytokine synthesis patterns and IgE responses in vivo with chemically modified allergen. Journal of Immunology, 150: 302.Google Scholar
  18. Gieni, R.S. and Hayglass, K.T., 1991. Regulation of murine IgE responses: induction of long-lived inhibition of allergen-specific responses is genetically restricted. Cellular Immunology, 138: 64.PubMedCrossRefGoogle Scholar
  19. Golding, B., Golding, H., Preston, S., Hernandez, D., Beining, P.R., Manischewitz, J., Harvath, L., Blackburn, R., Lizzio, E. and Hoffman, T., 1991. Production of a novel antigen by conjugation of HIV-1 to Brucella abortus: studies of immunogenicity, isotype analysis, T-cell dependency, and syncytia inhibition. AIDS Research and Human Retroviruses. 7: 435.PubMedCrossRefGoogle Scholar
  20. Golding, B., Inman, J., Highet, P., Blackburn, R., Manischewitz, J., Blyveis, N., Angus, R.D. and Golding, H., 1995 Brucella abortus conjugated with a gp120 or V3 loop peptide derived from human immunodeficiency virus (HIV) type 1 induces neutralizing anti-HIV antibodies, and the V3-B. abortus conjugate is effective even after CD4+ T-cell depletion. Journal of Virology, 69: 3299.PubMedGoogle Scholar
  21. Goldstein, J., Hoffman, T., Frasch, C., Lizzio, E.F., Beining, P.R., Hochstein, D., Lee, Y.L., Angus, R.D. and Golding, B., 1992. Lipopolysaccharide (LPS) from Brucella abortus is less toxic that that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B abortus as a carrier in vaccines. Infection and Immunity, 60: 1385.PubMedGoogle Scholar
  22. Grun, J.L. and Maurer, P.H., 1989. Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cellular Immunology. 121: 134.CrossRefGoogle Scholar
  23. Hayglass, K.T. and Stefura, B.P., 1991. Anti-interferon gamma treatment blocks the ability of glutaraldehye-polymerized allergens to inhibit specific IgE responses. J. Exp. Med., 173: 279.PubMedCrossRefGoogle Scholar
  24. Hayglass, K.T. and Strejan, G.H., 1983. Suppression of the IgE antibody response by glutaraldehyde-modified ovalbumin: dissociation between loss of antigenic reactivitiy and ability to induce suppression. Int.Arch.All.Appl.Immunol., 74: 332.CrossRefGoogle Scholar
  25. Heinzel, F.P., Sadick, M.D., Holaday, B.J., Coffman, R.L. and Locksley, R.M., 1991. Reciprocal expression of interferon gamma or IL4 during the resolution or regression of leishmaniasis. J.Exp. Med., 169: 59.CrossRefGoogle Scholar
  26. Hsieh, C.-S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O’Garra, A. and Murphy, K.M., 1993a. Development of Th1 CD4+ T cells through IL-12 produced by listeria-induced macrophages. Science. 260: 547.PubMedCrossRefGoogle Scholar
  27. Hsieh, C.-S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O’Garra, A. and Murphy, K.M., 1993b. Development of Th1 CD4+ T cells through IL-12 produced by Listeria I-induced macrophages. Science. 260: 547.PubMedCrossRefGoogle Scholar
  28. Lapham, C., Golding, B., Inman, J., Blackburn, R., Manishewitz, J., Highet, P. and Golding, H., 1996. Brucella abortus conjugated with a peptide derived from the V3 loop of human immunodeficiency Virus (HIV) Type 1 induces HIV-specific cytotoxic T-cell responses in normal and in CD4+ cell-depleted BALB/c mice. Journal of Virology. 70: 3084.PubMedGoogle Scholar
  29. Maggi, E., Parronchi, P., Manetti, R., Simonelli, C., Piccinni, M.-P., Rugiu, F.S., De Carli, M., Ricci, M. and Romagnani, S., 1992. Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro develpment of human Th1 and Th2 clones. J. Immunol., 148: 2142.PubMedGoogle Scholar
  30. Meade, R., Askenase, P.W., Geba, G.P., Neddermann, K., Jacoby, R.O. and Pasternak, R.D., 1992, Transforming growth factor-beta inhibits murine immediate and delayed type hypersensitivity. J. Immunol., 149: 521.PubMedGoogle Scholar
  31. Morris, S.C., Madden, K.B., Adamovicz, J.J., Gause, W.C., Hubbard, B.R., Gately, M.K. and Finkelman, F.D. 1994. Effects of IL-12 on in vivo cytokine gene expression and Ig isotype selection. Journal of Immunology. 152: 1047.Google Scholar
  32. Mosmann, T.R. and Coffman, R.L., 1989. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu.Rev.Immunol., 7: 145.PubMedCrossRefGoogle Scholar
  33. Nakamura, M., Nagata, T., Xavier, R.M. and Tanigawa, Y., 1996. Ubiquitin-like polypeptide inhibits the IgE response of lipopolysaccharide-activated B cells. Int.Immunol., 8: 1659.PubMedCrossRefGoogle Scholar
  34. Parronchi, P., Macchia, D., Piccinni, M.-P., Biswas, P., Simonelli, C., Maggi, E., Ricci, M., Ansari, A.A. and Romagnani, S., 1991. Allergen-and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc.Natl.Acad.Sci. USA. 88: 4538.PubMedCrossRefGoogle Scholar
  35. Pene, J., Rousset, F., Briere, F., Chretien, I., Bonnefoy, J.Y., Spits, H., Yokota, T., Arai, K., Banchereau, J. and de Vries, J., 1988. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2. Proc.Natl.Acad.Sci.USA. 85: 6880.PubMedCrossRefGoogle Scholar
  36. Powrie, F. and Coffman, R., 1993. IL-4 and IL-10 inhibit DTH and IFN-gamma production. Eur.J.Immunol. 23: 2223.PubMedCrossRefGoogle Scholar
  37. Schmitt, E., Hoehn, P., Huels, C., Goedert, S., Palm, N., Rude, E. and Germann, T., 1994. T helper 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-gamma and is inhibited by transforming growth factor-beta. Eur. J.Immunol. 24: 793.PubMedCrossRefGoogle Scholar
  38. Scott, D.E., Agranovich, I., Inman, J., Gober, M. and Golding, B., 1997. Inhibition of primary and recall allergen-specific T helper cell type 2-mediated responses by a T helper cell type I stimulus. J.Immunol., 159, in press.Google Scholar
  39. Secrist, H., Chelen, C.J., Wen, Y., Marshall, J.D. and Umetsu, D.T., 1993. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J.Exp.Med., 178: 2123.PubMedCrossRefGoogle Scholar
  40. Seder, R.A., Gazinelli, R., Sher, A. and Paul, W.E., 1993. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing cells. Proc.Natl.Acad.Sci.USA. 90: 10188.PubMedCrossRefGoogle Scholar
  41. Snapper, C.M. and Mond, J.J., 1996. A model for induction of T cell-independent humoral immunity in response to polysaccharide antigens. J.Immunol., 157: 2229.PubMedGoogle Scholar
  42. Snapper, C.M. and Paul, W.E., 1987. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 236: 944.PubMedCrossRefGoogle Scholar
  43. Street, N.E., Schumacher, J.H., Fong, T., Bass, H., Fiorentino, D.F., Leverah, J.A. and Mosmann, T.R., 1990. Heterogeneity of mouse helper T cells. Evidence from bulk cultures and limiting dilution cloning for precursors of Thl and Th2 cells. J.Immunol., 144: 1629.PubMedGoogle Scholar
  44. Svetic’, A., Finkelman, F.D., Dieffenbach, C.W., Scott, D.E., Steinberg, A.D. and Gause, W.C., 1991. Cytokinegene expression following in vivo primary immunization with goat anti-mouse IgD. Journal of Immunology. 147: 2391.Google Scholar
  45. Svetic’, A.S., Jian, Y.C., Finkelman, F.D. and Gause, W.C., 1993. Brucella abortus induces a novel cytokine gene expression pattern characterized by elevated IL-10 and IFN-gamma in CD4+ T cells. Int.Immunol,. 5: 877.PubMedCrossRefGoogle Scholar
  46. Swain, S.L., Bradley, L.M., Croft, M., Tonkonogy, S., Atkins, G., Weinberg, A.D., Duncan, D.D., Hedrick, S.M., Dutton, R.W. and Huston, G., 1991. Helper T cell subsets: pheonotype, function, and the role of lymphokines in regulating their development. Immunol.Rev., 123: 115.PubMedCrossRefGoogle Scholar
  47. Swain, S.L., 1993. IL-4 dictates T-cell differentiation. Research Immunology, 144: 567.CrossRefGoogle Scholar
  48. Taguchi, T., McGhee, J.R., Coffman, R.L., Beagley, K.W., Eldridge, J.H., Takatsu, K. and Kiyono, H., 1990. Detection of individual mouse splenic T cells producing IFN-gamma and IL-5 using the enzyme-linked immunospot (ELISPOT) assay. J.Immunol.Meth., 128: 65.CrossRefGoogle Scholar
  49. Tanaka, T., Hu-Li, J., Seder, R.A., Fazekas de St.Groth, B. and Paul, W.E., 1993. Interleukin-4 suppresses interleukin-2 and interferon-gamma production by naive T cells stimulated by accessory cell-dependent receptor engagement. Proc.Natl.Acad.Sci.USA. 90: 5914.PubMedCrossRefGoogle Scholar
  50. Van de Wijgert, J.H., Verheul, F.M., Snippe, H., Check, I.J. and Hunter, R.I., 1991. Immunogenicity of S. pneumoniae type 14 capsular polysaccharide: influence of carriers and adjuvants on isotype distribution. Infection and Immunity, 59: 2750.PubMedGoogle Scholar
  51. Vaz, E.M., Vaz, N.M. and Levine, B.B., 1971. Persistent formation of reagins in mice injected with low doses of ovalbumin. Immunology, 21: 11.PubMedGoogle Scholar
  52. Wenner, C.A., Guler, M.L., Macatonia, S.E., O’Garra, A. and Murphy, K.M., 1996. Roles of IFN-gamma and IFN-alpha in IL-12-induced T helper 1 development. J.Immunol., 156: 1442.PubMedGoogle Scholar
  53. Yamamura, M., Uyemura, K., Deans, R.J., Weinburg, K., Rea, T.H., Bloom, B.R. and Modlin, R.L., 1991. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science, 254: 277.PubMedCrossRefGoogle Scholar
  54. Yang, X. and Hayglass, K.T., 1993. Allergen-dependent induction of interleukin-4 synthesis in vivo. Immunology, 78: 74.PubMedGoogle Scholar
  55. Zaitseva, M.B., Golding, H., Betts, M., Yamauchi, A., Bloom, E.T., Butler, L.E., Stevan, L. and Golding, B. 1995. Human peripheral blood CD4+ and CD8+ T cells express Th1-like cytokine mRNA and proteins following in vitro stimulation with heat-inactivated Brucella abortus. Infection and Immunity, 63: 2720.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Dorothy E. Scott
    • 1
  • Basil Golding
    • 1
  1. 1.Laboratory of Plasma Derivatives, Division of Hematology, Office of Blood, Center of Biologics Evaluation and ResearchUnited States Food and Drug AdministrationBethesdaUSA

Personalised recommendations