Vaccine Design pp 155-166 | Cite as

Adjuvant Directed Immune Specificity at the Epitope Level: Implications for Vaccine Development a Model Study Using Semliki Forest Virus Infection of Mice

  • H. Snippe
  • I. M. Fernández
  • C. A. Kraaijeveld
Part of the NATO ASI Series book series (NSSA, volume 293)


The objective of vaccination is to provide acquired protective immunity against invasive pathogens like viruses, bacteria, protozoa etc. For a number of them there is a vaccine available (against mumps, rubella, poliomyelitis, diphtheria, measles, hepatitis B, tuberculosis...) that shows a variable degree of efficacy and in minor instances unwanted side effects. Socioeconomic status of the population and immunological state of the individual (different for newborns, toddlers, elderly, immunosuppressed) influence the outcome of vaccination to a high extent. Until now no vaccine has been developed for a variety of diseases, malaria and human immunodeficiency virus (HIV) being important examples, and for many others (pneumococcus) an improved version of the current vaccine remains to be prepared.


Human Immunodeficiency Virus Cell Epitope Peptide Vaccine Semliki Forest Virus Adjuvant Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ada, G.L., 1990, Modern vaccines. The immunological principles of vaccination, The Lancet, 335: 523.CrossRefGoogle Scholar
  2. Allison, A.C. and Byars, NE, 1986, An adjuvant formulation that selectively elicits the formation of antibodies of protective isotypes and cell-mediated immunity, J. Immunol. Meth., 95: 157.CrossRefGoogle Scholar
  3. Alving, C.R., 1991, Liposomes as carriers of antigens and adjuvants. J. Immunol. Meth., 140: 1.CrossRefGoogle Scholar
  4. Boere, W.A.M., Benaissa-Trouw, B.J., Harmsen, M., Kraaijeveld, C.A. and Snippe, H., 1983, Neutralizing and non-neutralizing monoclonal antibodies to the E2 glycoprotein of Semliki Forest virus can protect mice from lethal encephalitis, J. Gen. Virol., 64: 1405.PubMedCrossRefGoogle Scholar
  5. Bomford, R, 1984, Relative adjuvant efficacy of Al(OH)3 and saponin is related to the immuno genicity of the antigen, Int. Archs. Allergy Appl. Immun., 75, 280.CrossRefGoogle Scholar
  6. Boom, W.H., Liano, D. and Abbas, A.K., 1988, Heterogeneity of helper/inducer T lymphocytes II. Effects of interleukin 4-and interleukin 2-producing T cell clones on resting B lymphocytes, J. Exp. Med., 167: 1350.PubMedCrossRefGoogle Scholar
  7. Braathen, L.R., Bjercke, S. and Thorsby, E., 1984, The antigen-presenting function of human Langerhans cells. Immunobiol., 168: 301.Google Scholar
  8. Brown, A.L., Francis, M.J., Hastings, G.Z., Parry, N.R., Barnett, P.V., Rowlands, D.J. and Clarke, B.E., 1991, Foreign epitopes in immunodominant regions of hepatitis B core particles are highly immunogenic and conformationally restricted, Vaccine, 9: 595.PubMedCrossRefGoogle Scholar
  9. Cease, K.B., Margalit, H., Cornette, J.L., Putney, S.D., Robey, W.G., Ouyang, C., Streicher, H.Z., Fischinger, P.J., Gallo, R.C., Delisi, C. and Berzofsky, J.A., 1987, Helper T-cell antigenic site identification in the acquired immunodeficiency syndrome virus gp120 envelope protein and induction of immunity in mice to the native protein using a 16-residue synthetic peptide, Proc. Natl. Acad. Sci. USA, 84: 4249.PubMedCrossRefGoogle Scholar
  10. Clarke, B.E., Newton, S.E., Carroll, A.R., Francis, M.J., Appleyard, G., Syred, A.D., Highfield, P.E., Rowlands, D.J. and Brown, F. 1987, Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein, Nature, 330: 381.PubMedCrossRefGoogle Scholar
  11. Cox, J.H., Ivanyi, J., Young, D.B., Lamb, J.R., Syred, A.D. and. Francis, M.J., 1988, Orientation of epitopes influences the immunogenicity of synthetic peptide dimers, Eur. J. Immunol., 18: 2015.PubMedCrossRefGoogle Scholar
  12. Durda, P.J., Bacheler, L., Clapham, P., Jenoski, A.M., Leece, B., Matthews, T.J., McKnight, A., Pomerantz, R., Rayner, M. and Weinhold, K.J., 1990. HIV-1 neutralizing monoclonal antibodies induced by a synthetic peptide, AIDS Res. Hum. Retrov., 6: 1115.CrossRefGoogle Scholar
  13. Fernández, I.M., Snijders, A., Benaissa-Trouw, B.J., Harmsen, M., Snippe, H. and Kraaijeveld, C.A., 1993, Influence of epitope polarity and adjuvants on the immunogenicity and efficacy of a synthetic peptide vaccine against Semliki Forest virus, J. Virol., 67: 5843.PubMedGoogle Scholar
  14. Fernández, I.M., Ovaa, W., Harmsen, M., Benaissa-Trouw, B.J., Bos, N.A., Kraaijeveld, C.A. and Snippe, H., 1994, A shared idiotope among antibodies against Semliki Forest virus. Viral Immunol., 7: 71.PubMedCrossRefGoogle Scholar
  15. Fernández, I.M., 1996, Diversity of the humoral response against peptide and anti-idiotypic vaccines in the Semliki Forest virus model, Academic Thesis. Utrecht..Google Scholar
  16. Finkelman, F.D., Katona, I.M., Mosmann, T.R. and Coffman, R.L., 1988, IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses, J. Immunol., 140: 1022.PubMedGoogle Scholar
  17. Francis, M.J., Fry, C.M., Rowlands, D.J., Bittle, J.L., Houghten, R.A. Lerner, R.A. and Brown, F., 1987, Immune response to uncoupled peptides of foot-and-mouth disease virus, Immunology, 61: 1.PubMedGoogle Scholar
  18. Garoff, H., Frischauf, A.-M. Simons, K., Lerach, H. and Delius, H., 1980, Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins, Nature, 288: 236.PubMedCrossRefGoogle Scholar
  19. Geysen, H.M., Barteling, S.J. and Meloen, R.H., 1985, Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein, Proc. Natl. Acad. Sci. USA, 82: 178.PubMedCrossRefGoogle Scholar
  20. Hunter, R.L. and Bennett, B., 1984, The adjuvant activity of nonionic block polymer surfactants. II. Antibody formation and inflammation related to the structure of triblock and octablock copolymers, J. Immunol., 133: 3167.PubMedGoogle Scholar
  21. Hunter, R.L. and Bennett, B., 1986, The adjuvant activity of nonionic block polymer surfactants. III. Characterization of selected biologically active surfaces, Scand. J. Immunol., 23: 287.PubMedCrossRefGoogle Scholar
  22. Hunter, R., Olsen, M., and Buynitzky, S., 1991, Adjuvant activity of non-ionic block copolymers. IV. Effect of molecular weight and formulation on titre and isotype of antibody, Vaccine, 9: 251.CrossRefGoogle Scholar
  23. Javaherian, K., Langlois, A.J., LaRosa, G.J., Profy, A.T., Bolognesi, D.P., Herlihy, W.C., Putney, S.D. and Matthews, T.J., 1990, Broadly neutralizing antibodies elicited by the hypervariable neutralizing determinant of HIV-, Science, 250: 1590.PubMedCrossRefGoogle Scholar
  24. Kalish, M.L., Check, I.J., and Hunter, R.L. 1991, Murine IgG isotype responses to the Plasmodium cynomolgi circumsporozoite peptide (NAGG)5, J. Immunol., 146: 3583.PubMedGoogle Scholar
  25. Karagouni, E.E. and Hadjipetrou-Kourounakis, L., 1990. Regulation of isotype immunoglobulin production by adjuvants in viv,. Scand. J. Immunol., 31: 745.PubMedCrossRefGoogle Scholar
  26. Kenney, J.S., Hughes, B.W., Masada, M.P. and Allison, A.C., 1989. Influences of adjuvants on the quantity, affinity, isotype and epitope specificity of murine antibodies, J. Immunol. Meth., 121: 157.CrossRefGoogle Scholar
  27. Kilgus, J., Jardetzky, T., Gorga, J.C., Trzeciak, A., Gillessen, D. and Sinigaglia, F., 1991, Analysis of the permissive association of a malaria T cell epitope with DR molecules, J. Immunol., 146: 307.PubMedGoogle Scholar
  28. Langedijk, J.P.M., Back, N.K.T., Durda, P.J., Goudsmit, J. and Meloen, R.H., 1991, Neutralizing activity of anti-peptide antibodies against the principal neutralization domain of human immunodeficiency virus type 1, J. Gen. Virol., 72: 2519.PubMedCrossRefGoogle Scholar
  29. Langeveld, J.P.M., Casal, J.I., Osterhaus, A.D.M.E., Cortés, E., Swart, R. De, Vela, C., Dalsgaard, K., Puijk, W.C., Schaaper, W.M.M. and Meloen, R.H., 1994, First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs, J. Virol., 68: 4506.PubMedGoogle Scholar
  30. Lanzrein, M., Schlegel, A. and Kempf, C., 1994, Entry and uncoating of enveloped viruses, Biochem. J., 302: 313.PubMedGoogle Scholar
  31. Levely, M.E., Mitchell, M.A. and Nicholas, J.A., 1990, Synthetic immunogens constructed from T-cell and B-cell stimulating peptides (T: B chimeras): preferential stimulation of unique T-and B-cell specificities is influenced by immunogen configuration, Cell. Immunol., 125: 65.PubMedCrossRefGoogle Scholar
  32. Lovgren, K., and Morein, B., 1991, The iscom: an antigen delivery system with built-in adjuvant, Mol. Immunol., 28: 285.PubMedCrossRefGoogle Scholar
  33. Marx, J.L., 1988, What T cells see and how they see it, Science, 242: 863.PubMedCrossRefGoogle Scholar
  34. Mosmann, T.R., Cherwinsky, H., Bond, M.W., Giedlin, M.A. and Coffman, R.L., 1986, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol., 136: 2348.PubMedGoogle Scholar
  35. Niman, H.L., Houghten, R.A., Walker, L.E., Reisfeld, R.A.,. Wilson, I.A., Hogle, J.M. and Lerner, R.A., 1983, Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition, Proc. Natl. Acad. Sci. USA, 80: 4949.PubMedCrossRefGoogle Scholar
  36. Noelle, R. and Snow, E.C., 1992, T helper cells, Curr. Opin. Immunol., 4: 333.PubMedCrossRefGoogle Scholar
  37. Panina-Bordignon, P., Tan, A., Termijtelen, A., Demotz, S., Corradin, G. and Lanzavecchia, A., 1989, Universal ly immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur. J. Immunol., 19: 2237.PubMedCrossRefGoogle Scholar
  38. Paul, W.E., 1992, Poking holes in the network, Nature, 357: 16.PubMedCrossRefGoogle Scholar
  39. Randall, R.E., 1989, Solid matrix-antibody-antigen (SMAA) complexes for constructing multivalent subunit vaccines. Immunol. Today, 10: 336.PubMedCrossRefGoogle Scholar
  40. Randall, R.E. and Young, D.F., 1989, Immunization against multiple viruses by using solid-matrix-antibody-antigen complexes, J. Virol., 63: 1808.PubMedGoogle Scholar
  41. Robinson, K., Mostratos, A., and Grencis, R.K., 1995, Generation of rubella virus-neutralising antibodies by vaccination with synthetic peptides, FEMS Immunol. and Med. Microbiol., 10: 191.CrossRefGoogle Scholar
  42. Scalzo, A.A., Elliott, S.L., Cox, J., Gardner, J., Moss, D.J. and Suhrbier, A., 1995, Induction of protective cytotoxic T cells to murine cytomegalovirus by using a nonapeptide and a human-compatible adjuvant (Montanide ISA 720) J. Virol., 69: 1306.PubMedGoogle Scholar
  43. Schmaljohn, A.L., Johnson, E.D., Dalrymple, J.M. and Cole, G.A., 1982, Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis, Nature, 297: 70.PubMedCrossRefGoogle Scholar
  44. Schrader, J.W., 1991, Peptide regulatory factors and optimization of vaccines, Mol. Immunol., 28: 295.PubMedCrossRefGoogle Scholar
  45. Scott, M.T., Goss-Sampson, M. and Bomford, R., 1985. Adjuvant activity of saponin: antigen localization studies, Int. Archs. Allergy appl. Immun., 77: 409.CrossRefGoogle Scholar
  46. Simons, K. and Garoff, H., 1980, The budding mechanisms of enveloped animal viruses, J. Gen. Virol., 50: 1.PubMedCrossRefGoogle Scholar
  47. Sinigaglia, F., Guttinger, M., Kilgus, J., Doran, D.M., Matile, H., Etlinger, H., Trzeciak, A., Gillesen, D. and Pink, J.R.L., 1988. A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules, Nature, 336: 778.PubMedCrossRefGoogle Scholar
  48. Snijders, A., Benaissa-Trouw, B.J., Oosterlaken, T.A.M., Puijk, W.C., Posthumus, W.P.A., Meloen, R.H., Boere, W.A., Oosting, J.D., Kraaijeveld, C.A. and Snippe, H., 1991, Identification of linear epitopes on Semliki Forest virus and their efficacy as synthetic peptide vaccine, J. Gen. Virology, 72: 557.CrossRefGoogle Scholar
  49. Snijders, A., Benaissa-Trouw, B.J., Snippe, H. and Kraaijeveld, C.A., 1992, Immunogenicity and vaccine efficacy of synthetic peptides containing Semliki Forest virus B and T cell epitopes, J Gen Virology, 73: 2267.CrossRefGoogle Scholar
  50. Snijders, A., 1992, Vaccine efficacy of synthetic peptides. A model study using Semliki Forest virus infection of mice. Academic Thesis. Utrecht.Google Scholar
  51. Staruch, M.J. and Wood, D.D., 1983, The adjuvanticity of interleukin 1 in vivo. J. Immunol., 130: 2191.PubMedGoogle Scholar
  52. Stevens, T.L., Bossie, A., Sanders, V.M., Fernandez-Botran, R,. Coffman, R.L., Mosmann, T.R. and Vitetta, E.S., 1988, Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells, Nature, 334: 255.PubMedCrossRefGoogle Scholar
  53. Steward-Tull, D.E.S., ed., 1983. in: “Biology of Microbacteria” vol. 2, Academic Press, London.Google Scholar
  54. Strauss, J.H., Strauss, E.G., and Kuhn, R.J., 1995, Budding of alphaviruses, Trends in Microbiol., 3: 346.CrossRefGoogle Scholar
  55. Streilein, J.W. and Bergstresser, P.R., 1984, Langerhans cells: antigen presenting cells of the epidermis. Immunobiol., 168: 285.CrossRefGoogle Scholar
  56. Thérien, H.-M., Shahum, E. and Fortin, A., 1991, Liposome adjuvanticity: influence of dose and protein: lipid ratio on the humoral response to encapsulated and surface-linked antigen, Cell. Immunol., 136: 402.PubMedCrossRefGoogle Scholar
  57. Valensi, J.-M. M., Carlson, J.R. and Van Nest, G.A., 1994, Systemic cytokine profiles in BALB/c mice immunized with trivalent influenza vaccine containing MF59 oil emulsion and other advanced adjuvants. J. Immunol., 153: 4029.PubMedGoogle Scholar
  58. Vogel, R.H., Provencher, S.W., Bonsdorff, C.-H. von, Adrian, M., and Dubochet, J 1986, Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs, Nature, 320: 533.PubMedCrossRefGoogle Scholar
  59. Zigterman, G.J.W.J., Snippe, H., Jansze, M. and Wiüers, J.M.N., 1988, Adjuvant effects of nonionic block polymer surfactants on liposome-induced humoral immune response. II. Mode of action. Chapter 3, Academic Thesis, Utrecht.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • H. Snippe
    • 1
  • I. M. Fernández
    • 1
  • C. A. Kraaijeveld
    • 1
  1. 1.Eijkman-Winkler Institute for Microbiology, Infectious Diseases and InflammationUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations