The Potential Use of Different Vaccination Protocols to Tailor Cytokine Profiles

  • Emmanuel Comoy
  • André Capron
  • Georges Thyphronitis
Part of the NATO ASI Series book series (NSSA, volume 293)


Helper CD4+ T cells, through the production of cytokines, play a central role in the regulation of immune responses. In vitro studies with murine T cell clones have shown the existence of two types of Th cells that could be distinguished on the basis of their cytokine production (Mosmann et al., 1986; Mosmann and Coffman, 1989). The Th1 subset secretes IL-2 and IFN-γ, and preferentially promotes cell-mediated immunity and IgG2a production by B lymphocytes whereas the Th2 subset produces IL-4, IL-5, IL-10 and IL-13, and induces humoral immunity and IgG1 and IgE isotypes production ( Snapper and Paul 1987; Coffman et al, 1986; Thyphronitis et al., 1989; Cocks et al, 1993). In vivo studies revealed that in some infections, these cytokine profiles determine the outcome of the disease, demonstrating that this dichotomy is physiologically relevant (Heinzel et al., 1989; Mielke et al., 1993; Yamamura et al., 1991; Flesch and Kaufmann 1987). In general Thl responses are more effective against some intracellular pathogens (Heinzel et al., 1989; Hsieh et al., 1993), whereas Th2 responses are more appropriate in helminth parasitoses (Sher and Coffman 1992; Urban et al., 1991). Using animal models, it has been shown that in some diseases, the expression of the inappropriate profile can be deleterious and enhance pathology. This is best illustrated with the mouse leishmaniasis model. Animals that in response to infection, develop a Th1 type response, spontaneously heal, as opposed to mice that develop a Th2 response and succumb to the infection (Heinzel et al., 1989). Evolution of several other infectious diseases including T. muris infection in mice (Else et al., 1994), M. leprae infections in humans (Yamamura et al., 1991) and others have been shown to be dependent or associated with the one or the other type of Th responses.


Cell Clone Cytokine Profile Schistosoma Mansoni Adjuvant Formulation Antigen Specific Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anjam Khan, C. M., Villarreal-Ramos, B., Pierce, R. J., Riveau, G., Demarco de Hormaeche, R., Mc Neill, H., Ali, T., Fairweather, N., Chatfield, S., Capron, A., Dougan, G. and Hormaeche, C. E., 1994. Construction, expression, and immunogenicity of the Schistosoma mansoni P28 Glutathione S-transferase as a genetic fusion to tetanus toxin fragment C in a live Aro attenuated vaccine strain of Salmonella. Proc. Natl. Acad. Sci. USA. 91: 11261.CrossRefGoogle Scholar
  2. Austyn, J. M., 1996. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med., 183: 1287.PubMedCrossRefGoogle Scholar
  3. Balloul, J.-M., Sondermeyer, P., Dreyer, D., Capron, M., Grzych, J.-M., Pierce, R. J., Carvallo, D., Lecocq, J.-P. and Capron, A., 1987. Molecular cloning of a protective antigen of schistosomes. Nature. 326: 149.PubMedCrossRefGoogle Scholar
  4. Balloul, J.-M., Grzych, J.-M., Pierce, R. J. and Capron, A., 1987. A purified 28.000 Dalton protein from Schistosoma mansoni adult worms protects rats and mice against experimental schistosomiasis. J. Immunol., 138: 3448.PubMedGoogle Scholar
  5. Boulanger, D., Reid, G. D., Sturrock, R. F., Wolwczuk, I., Balloul, J.-M., Grezel, D., Pierce, R. J., Otieno, M.F., Guerret, S., Grimaud, J. A., Butterworth, A. E. and Capron, A., 1991. Immunization of mice and baboons with the recombinant Sm28 GST affects both worm viability and fecundity after experimental infection with Schistosoma mansoni. Parasite Immunol., 13: 473.PubMedCrossRefGoogle Scholar
  6. Brunner, T., Heusser, C.H. and Dahinden, C.A., 1993. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J. Exp. Med. 177: 605.PubMedCrossRefGoogle Scholar
  7. Caux, C., Liu, Y.-J. and Banchereau, J. 1995. Recent advances in the study of dendritic cells and follicular dendritic cells. Immunol. Today, 16: 2.PubMedCrossRefGoogle Scholar
  8. Chong, C., Bost, K. L. and Clements, J. D. 1996. Differential production of interleukin-12 mRNA by murine macrophages in response to viable or killed Salmonella spp. Infect. Immun., 64: 1154.PubMedGoogle Scholar
  9. Cocks, B.G., de Waal Malefyt, R., Galizzi, J-P., de Vries, J.E. and Aversa, G., 1993. IL-13 induces proliferation and differentiation of human B cells activated by the CD40 ligand. Int. Immunol., 5: 657.PubMedCrossRefGoogle Scholar
  10. Coffman, R. L., Ohara, J., Bond, M.W., Carty, J., Zlotnik, A. and Paul, W.E., 1986. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J. Immunol., 136: 4538.PubMedGoogle Scholar
  11. De Becker, G., Sornasse, T., Nabavi, N., Bazin, H., Tielemans, F., Urbain, J., Leo, O. and Moser, M., 1994. Immunoglobulin isotype regulation by antigen-presenting cells in vivo. Eur.J.Immunol., 24: 1523.PubMedCrossRefGoogle Scholar
  12. Else, K.J., Finkelman, F.D., Maliszwewski, C.R. and Grencis, R.K., 1994, Cytokine-mediated regulation of chronic intestinal helminth infection. J.Exp.Med., 179: 347.PubMedCrossRefGoogle Scholar
  13. Finkelman, F.D. and Urban Jr, J.F., 1992. Cytokines: making the right choice. Parasitol.Today., 8: 311.PubMedCrossRefGoogle Scholar
  14. Flesch, I. and Kaufmann, S.H.E., 1987. Mycobacterial growth inhibition by interferon-γ-activated bone marrow macrophages and differential susceptibility among strains of Mycobacterium tuberculosis. J. Immunol., 138: 4408.PubMedGoogle Scholar
  15. Gollob, K.J. and Coffman, R.L., 1994. A minority subpopulation of CD4+ T cells directs the development of naive CD4+ T cells into IL-4-secreting cells. J. Immunol., 152: 5180.PubMedGoogle Scholar
  16. Grzych, J.-M., Pearce, E., Cheever, A., Caulada, Z., Caspar, P., Hieny, S., Lewis, F. and Sher, A., 1991, Egg deposition is the major stimulus for the production of TH2 cytokines in murine Schistosomiasis mansoni. J. Immunol., 146: 1322.PubMedGoogle Scholar
  17. Heinzel, F.P., Sadick, M.D., Holaday, B.J., Coffman, R.L. and Locksley, R.M., 1989. Reciprocal expression of interferon or IL-4 during the resolution or progression of murine leishmaniasis. J. Exp. Med., 169: 59.PubMedCrossRefGoogle Scholar
  18. Hsieh, C.-S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O’Garra, A. and Murphy, K.M., 1993. Development of TH1 CD4+ T cells through IL-12 produced by listeria-induced macrophages. Science, 260: 547.PubMedCrossRefGoogle Scholar
  19. Karem, K.L., Chatfield, S., Kuklin, N. and Rouse, B.T., 1995. Differential induction of carrier antigen-specific immunity by Salmonella typhimurium live-vaccine strains after single mucosal or intravenous immunization of BALB/c mice. Infect. Immun., 63: 4557.PubMedGoogle Scholar
  20. Lamkhioued, B., Aldebert, D., Gounni, A.S., Goldman, M., Capron, A. and Capron, M., 1995. Synthesis of cytokines by eosinophils and their regulation. Int. Arch. Allergy Immunol., 107: 122.PubMedCrossRefGoogle Scholar
  21. Macatonia, S.E., Hosken, N.A., Litton, M., Vieira, P., Hsieh, C.S., Culpepper, J.A., Wysocka, M., Trinchieri, G., Murphy, K.M. and O’Garra, A., 1995. Dendritic cells produce IL-12 and direct the development of TH1 cells from naive CD4+ T cells. J. Immunol., 154: 5071.PubMedGoogle Scholar
  22. Mahanty, S., King, C.L., Kumaraswami, V., Regunathan, J., Maya, A., Jayaraman, K., Abrams, J.S., Ottesen, E.A. and Nutman, T.B., 1993. IL-4 and IL-5-secreting lymphocyte populations are preferentially stimulated by parasite-derived antigens in human tissue invasive nematode infections. J. Immunol., 151: 3704.PubMedGoogle Scholar
  23. Mielke, M.E., Ehlers, S. and Hahn, H., 1993. The role of cytokines in experimental listeriosis. Immunobiol., 189: 285.CrossRefGoogle Scholar
  24. Moqbel, R., Ying, S., Barkans, J., Newman, T.M., Kimmitt, P., Wakelin, M., Taborda-Barata, L., Meng, Q., Corrigan, C.J., Durham, S.R. and Kay, B., 1995. Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J. Immunol., 155: 4939.PubMedGoogle Scholar
  25. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. and Coffmann, R.L., 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol., 136: 2348.PubMedGoogle Scholar
  26. Mosmann, T.R., and Coffman, R.L., 1989. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Ann. Rev. Immunol., 7: 145.CrossRefGoogle Scholar
  27. Parronchi, P., Macchia, D., Piccinni, M-P., Biswas, P., Simonelli, C., Maggi, E., Ricci, M., Ansari, A.A. and Romagnani, S., 1991. Allergen-and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc. Natl. Acad. Sci. USA. 88: 4538.PubMedCrossRefGoogle Scholar
  28. Seder, R.A., Plaut, M., Barbieri, S., Urban, J., Finkelman, F.D. and Paul, W.E., 1991. Mouse splenic and bone marrow cell populations that express high-affinity Fce receptors and produce interleukin 4 are highly enriched in basophils. Proc. Natl. Acad. Sci. USA. 88: 2835.PubMedCrossRefGoogle Scholar
  29. Schmitz, J. and Radbruch, A., 1992. Distinct antigen presenting cell-derived signals induce Th cell proliferation and expression of effector cytokines. Intern. Immunol., 4: 43.CrossRefGoogle Scholar
  30. Sher, A. and Coffman, R.L., 1992. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu. Rev. Immunol., 10: 385.PubMedCrossRefGoogle Scholar
  31. Snapper, CM. and Paul, W.E., 1987. Interferon-γ and B Cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 236: 944.PubMedCrossRefGoogle Scholar
  32. Swain, S.L., 1995. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity, 1: 543.Google Scholar
  33. Thatte, J., Rath, S. and Bal, V., 1993. Immunization with live versus killed Salmonella typhimurium leads to the generation of an IFN-γ-dominant versus an IL-4-dominant immune response. Int. Immunol., 5: 1431.PubMedCrossRefGoogle Scholar
  34. Thyphronitis, G., Tsokos, G.C., June, C., Levine, A.D. and Finkelman, F.D., 1989. IgE secretion by Epstein-Barr virus-infected purified human B lymphocytes is stimulated by interleukin 4 and suppressed by interferon-γ. Proc. Natl. Acad. Sci. USA. 86: 5580.PubMedCrossRefGoogle Scholar
  35. Trinchieri, G., 1989. Biology of natural killer cells. Adv. Immunol., 47: 187.PubMedGoogle Scholar
  36. Urban, J.F., Jr., Katona, I.M., Paul, W.E. and Finkelman, F.D., 1991. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc. Natl. Acad. Sci. USA. 88: 5513.PubMedCrossRefGoogle Scholar
  37. Wierenga, E.A., Snoek, M., de Groot, C., Chretien, I., Bos, J.D., Jansen, H.M. and Kapsenberg, M.L., 1990. Evidence for compartmentalization of functional subsets of CD4+ T lymphocytes in atopic patients. J. Immunol., 144: 4651.PubMedGoogle Scholar
  38. Wolowczuk, I., Auriault, C., Bossus, M., Boulanger, D., Gras-Masse, H., Mazingue, C., Pierce, R.J., Grezel, D., Reid, G.D., Tartar, A. and Capron, A., 1991. Antigenicity and immunogenicity of a multiple peptidic construction of the Schistosoma mansoni Sm-28 GST antigen in rat, mouse and monkey. J. Immunol., 146: 1987.PubMedGoogle Scholar
  39. Xu, C.B., Verwaerde, C., Grzych, J.-M., Fontaine, J. and Capron, A., 1991. A monoclonal antibody blocking the Schistosoma mansoni 28 kDa glutathione-S-transferase activity reduces female worm fecundity and egg viability. Eur. J. Immunol., 21: 1801.PubMedCrossRefGoogle Scholar
  40. Xu, C.-B., Verwaerde, C., Gras-Masse, H., Fontaine, J., Bossus, M., Trottein, F., Wolowczuk, I., Tartar, A. and Capron, A., 1993. Schistosoma mansoni 28-kDa glutathione S-transferase and immunity against parasite fecundity and egg viability. J. Immunol., 150: 940.PubMedGoogle Scholar
  41. Yamamura, M., Uyemura, K., Deans, R.J., Weinberg, K, Rea, T.H., Bloom, B.R. and Modlin, R.L., 1991. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science. 254: 277.PubMedCrossRefGoogle Scholar
  42. Yoshimoto, T. and Paul, W.E., 1994. CD4pos, NK1.1 pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med., 179: 1285.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Emmanuel Comoy
    • 1
  • André Capron
    • 1
  • Georges Thyphronitis
    • 1
  1. 1.INSERM U167Institut Pasteur de LilleLilleFrance

Personalised recommendations