Apitherapy (Bee Venom Therapy)

Literature Review
  • Christopher M.-H. Kim

Abstract

Apitherapy is the medicinal use of various products of Apis mellifera (the common honeybee) including raw honey, pollen, propolis, beeswax, royal jelly and venom. Various studies attribute antibacterial, antifungal, anti-inflammatory, antiproliferative and anticancer potentiating properties to honey.(1)

In China, for example, raw honey is applied to burns as an antiseptic and a pain killer.(2–3) Recently, propolis has been identified as containing substances called caffeic esters that inhibit the development of precancerous changes in the colon of rats given a known carcinogen.(4) Preparations from pieces of honeycomb containing pollen are reported to be successful for treating allergies and bee pollen is touted as an excellent food. This review focuses on related research materials about bee venom to treat chronic inflammatory painful illness.

Keywords

Chronic Obstructive Pulmonary Disease Myotonic Muscular Dystrophy Adjuvant Arthritis Royal Jelly Inflammatory Illness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Science News. Sweet route to heading off colon cancer. 1993, 144:p.207.Google Scholar
  2. 2.
    Fang Z. The honeybee and human health. NAAS Proc. 1982, 5:p. 18.Google Scholar
  3. 3.
    Xu RX. Burn treatment with raw honey. China National Science and Technology Center 1990.Google Scholar
  4. 4.
    Rao CV, Desai D, Simi B et al. Inhibitory effect of caffeic acid esters on azoxymethane-induced biochemical changes and aberrant crypt foci formation in rat colon. Cancer Res. 1993, 53(18):4182–4188.PubMedGoogle Scholar
  5. 5.
    Kim CM-H. Bee venom therapy. Managing Stress and Pain 1986, 1:4:1–6.Google Scholar
  6. 6.
    Terc P. Lecture in the Monthly Assembly of Beekeepers, February 11, 1904. In: Bee venom: the natural curative for arthritis and rheumatism. G.P Putnam’s sons, New York, 1962, Appendix H, pp. 183-197.Google Scholar
  7. 7.
    Langer J. Uber das Gift unserer Honigbiene. Arch.Exp.Path.Pharmk. Leipz 1897, 38:381–396.CrossRefGoogle Scholar
  8. 8.
    Neumann W, Habermann E and Amend G. Zur papierelektrophoretischen Fraktionierung tierischer Gifte. Naturwissenschaften 1952, 39:286–287.CrossRefGoogle Scholar
  9. 9.
    Kim CM-H. Bee venom therapy and bee acupuncture therapy (Medical Text). Published 1992 (Korean Ed.), pp515, 1000 references.Google Scholar
  10. 10.
    Habermann E and Reiz KG. Ein neues Verfahren zur Gewinnung der Komponenten von Bienengift, insbesondere des zentral wirksamen Peptids Apamin. Biochem. Z. 1965, 341:451–466.Google Scholar
  11. 11.
    Fredholm B. Studies on a mast cell degranulating factor in bee venom. Biochem. Pharmacol. 1966, 15:2037–2042.PubMedCrossRefGoogle Scholar
  12. 12.
    Shkenderov S and Koburova K. Adolapin-A newly isolated analgesic and anti-inflammatory polypeptide from bee venom. Toxicon 1982, 20:317–321.PubMedCrossRefGoogle Scholar
  13. 13.
    Shkenderov S. A protease inhibitor in bee venom. Identification, partial purification and some properties. FEBS Lett: 1973, 33:343–347.PubMedCrossRefGoogle Scholar
  14. 14.
    Gauldie J, Hanson JM, Rumjanek FD, Shipolini RA and Vernon CA. The peptide components of bee venom. Eur. J. Biochem. 1976, 61:369–376.PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson DA and O’Connor R. The venom of the honey bee (Apis mellifera): Free amino acids and peptides. Can. J. Biochem. 1968, 46:1221–1226.PubMedGoogle Scholar
  16. 16.
    Lowy PH, Sarmiento L and Mitchell HK. Polypeptides minimine and melittin from bee venom: Effects on Drosophilia. Arch. Biochem. Biophys. 1971, 145:338–343.PubMedCrossRefGoogle Scholar
  17. 17.
    Vick JA, Shipman WH and Brooks RB. Beta-adrenergic and anti-arrhythmic effects of cardiopep, a newly isolated substance from whole bee venom. Toxicon 1974, 12:139–144.PubMedCrossRefGoogle Scholar
  18. 18.
    Neumann W and Habermann E. Beitrage zur Charakterisierung der Wirkstoffe des Bienengiftes. Naunyn Schmiebergs Arch. Pharmacol. 1954; 222:367–387.Google Scholar
  19. 19.
    Habermann E and Neumann WP. Reinigung der Phospholipase A des Bienengiftes. Biochem. Z. 1957, 328:465–473.PubMedGoogle Scholar
  20. 20.
    Shkenderov S, Ivanova I and Grigorova K. An acid monophosphatase and alpha-glucosidase enzymes newly isolated from bee venom. Toxicon 1979, 17 (Suppl. 1): 169–170.Google Scholar
  21. 21.
    Ivanova I and Shkenderov S. A newly isolated enzyme with lyosphospholipase activity from bee venom. Toxicon 1982, 20:333–335.Google Scholar
  22. 22.
    Reinert M. Zur Kenutnis des Bienengiftes Festschrift. Emil Barell, Basel.Google Scholar
  23. 23.
    Owen MD. Insect venoms: Identification of dopamine and noradrenaline in wasp and bee stings. Experiential 1971, 27:544–546.CrossRefGoogle Scholar
  24. 24.
    Owen MD, Braidwood JL and Bridges AR. Catecholamines in honey bee (Apis mellifera) and various vespid (hymenoptera) venoms. Toxicon 1982, 20:1075–1084.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Connor R, Henderson G, Nelson D, Parker R and Peck M. The venom of the honey bee (Apis mellifera). General character. In Animal Toxins, Pergamon, Oxford 1967, pp 17-22.Google Scholar
  26. 26.
    Pincus T and Callahan LF. What is the natural history of rheumatoid arthritis? Current controversies in clinical rheumatology. Rheum. Dis. Clin. N. Am. 1993, 19(1): 123–151.Google Scholar
  27. 27.
    Artemov NM. The physiological proofs of apitherapy. Bee venom acts as a cholinolytic agent. XVII International Apicultural Congress, 1959.Google Scholar
  28. 28.
    Shipman WH and Cole LJ. Increased resistance of mice to X-irradiation after the injection of bee venom. Nature 1967, 215:311:2.PubMedCrossRefGoogle Scholar
  29. 29.
    Zurier RB. Effect of bee venom on experimental arthritis. Ann. Rheu. Dis. 1973, 32:466–470.CrossRefGoogle Scholar
  30. 30.
    Chang YH and Bliven ML. Anti-arthritic effect of bee venom. Agents and Actions 1979, 9:205–211.PubMedCrossRefGoogle Scholar
  31. 31.
    Hyre HM and Smith RA. Immunological effects of honeybee venom using balb/c mice. Toxicon 1986, 24:5:435–440.CrossRefGoogle Scholar
  32. 32.
    Hadjipetrou-Kourounakis L and Yiangou M. Bee venom, adjuvant induced disease and interleukin production. J. Rheum. 1988, 15:1126–1128.PubMedGoogle Scholar
  33. 33.
    Somerfiled SD. Bee venom and arthritis: magic, myth or medicine? New Zealand Med. J. 1986, 281-283.Google Scholar
  34. 34.
    Belli veau J. The effectiveness of bee venom an adjuvant induced colon cancer of the rats. II Am. Apitherapy Soc. Conf. 1992, Boston, USA.Google Scholar
  35. 35.
    Artemov NM. The biological bases of the therapeutic use of bee venom. University of Gorki, 1959:1-40.Google Scholar
  36. 36.
    Hammeral AM and Pitchier O. On therapy with AP Forty. Med. Clin. 1960, 55:2015–2021.Google Scholar
  37. 37.
    Vick JA and Shipman WH. Effects of whole bee venom and its fractions (apamin and melittin) on plasma Cortisol levels in the dog. Toxicon 1972, 10:377–380.PubMedCrossRefGoogle Scholar
  38. 38.
    Vick JA, Mehlman B, Brooks R, Phillips SJ and Shipman WH. Effect of bee venom and melittin on plasma Cortisol in the unanesthetized monkey. Toxicon 1972, 10:581–586.PubMedCrossRefGoogle Scholar
  39. 39.
    Hanson JM, Morley J and C. Soria-Herrera. Anti-inflammatory property of 401 (MCD-peptide), a peptide from the venom of the bee Apis mellifera (L). Br. J. Pharmacol. 1974, 50:383–392.PubMedCrossRefGoogle Scholar
  40. 40.
    Slotta KH, Vick JA and Ginsberg NJ. Enzymatic and toxic activity of phospholipase A. In De Vries and Kochva Eds., Toxins of Animal and Plant Origin, Vol.1, Gordon and Breach, New York 1971, pp 401-418.Google Scholar
  41. 41.
    Couch TL. The effect of venom of the honeybee on the adrenocortical responses of the adult male rat. Toxicon 1972, 10:55–62.PubMedCrossRefGoogle Scholar
  42. 42.
    Lorenzetti OJ, Fortenberry B and Busby E. The influence of bee venom in the adjuvant induced arthritic rat model. Res. Comm. Chem. Pathol. Pharmacol. 1972, 4(2):339–352.Google Scholar
  43. 43.
    Vick JA, Warren GB and Brooks RB. The effects of treatment with whole bee venom on cage avtivity and plasma Cortisol levels in the arthritic dog. Inflammation 1976, 1:167–174.CrossRefGoogle Scholar
  44. 44.
    Knepel W and Gerhards C. Stimulation by melittin of adrenocorticotrophin and beta-endophin release from rat adenohypophysis in vitro. Prostaglandins 1987, 33:3:479–490.PubMedCrossRefGoogle Scholar
  45. 45.
    Doughert. Biochern. J. 1960, 88:599.Google Scholar
  46. 46.
    Neubould BB. Peptide 401 in adjuvant arthritis in rats. Br.J.Pharmac. 1963, 21:127.Google Scholar
  47. 47.
    Zurier RB and Quagliata F. Effect of prostaglandin El on adjuvant arthritis. Nature 1971, 234:304.PubMedCrossRefGoogle Scholar
  48. 48.
    Billingham MEJ, Morley J, Hanson JM, Shipoli RA and Vernon CA. An anti-inflammatory peptide from bee venom. Nature 1973, 245:163–164.PubMedCrossRefGoogle Scholar
  49. 49.
    Surfer R and Dallas M. Peptide 401 and prostaglandin suppression of adjuvant arthritis. Arth.Rheu. 1973, 16(2):157–251.Google Scholar
  50. 50.
    Collier HJO. A pharmacological analysis of aspirin. Adv.Phama.Chemother. 1969, 7:333–405.Google Scholar
  51. 51.
    Banks BE, Rumjanek FD, Sinclair NM and Vernon CA. Possible therapeutic use of a peptide from bee venom. Bulletin, Pasteur Institute 1976; 74; 137–144.Google Scholar
  52. 52.
    Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biology 1971, 231:232–235.PubMedGoogle Scholar
  53. 53.
    Mancada S, Ferreira SH and Vane JR. Pain and inflammatory mediators. Handbook of Exp. Pharm., 50/1. Inflammation. Springer Verlag, New York 1978, pp 588–616.Google Scholar
  54. 54.
    Koburova KL, Michailova SG and Shkenderov SV. Further investigation on the antiinflammatory properties of adolapin-bee venom polypeptide. Acta Physiol. Pharmacol. Bulgaria 1985, Vol.II, No.2, 50–55.Google Scholar
  55. 55.
    Shkenderov S, Koburova K and Chavdarova V. Bee venom adolapin: effect on thromboxane A2 and prostacycline plasma levels in rats with model acute inflammation. Comptes rendus de l’Academie bulgare des Sciences 1986, 39:155–157.Google Scholar
  56. 56.
    Michailova SG, Koburova KL and Shkenderov SV. Acta Phys. Pharm. Bulg. 1985, Vol. VII, 50.Google Scholar
  57. 57.
    Shkenderov S. Anti-inflammatory effect of bee venom protease inhibitor on a model system of acute inflammatory edema. Comptes rendus de l’Academie bulgare des Sciences 1986; 39:151–154.Google Scholar
  58. 58.
    Mancada S and Vane IR. NEJM 1979, 300:1142.CrossRefGoogle Scholar
  59. 59.
    Gryglewsky R, Korbut R and Dembinska-Kiec. Prostaglandins and Thromboxanes. Plenum Press, New York 1977, 363.CrossRefGoogle Scholar
  60. 60.
    Grady O, Warrington I and Moti M. Prostaglandins 1980, 19:319.CrossRefGoogle Scholar
  61. 61.
    Somerfield SD, Stach JL, Mraz C, Gervais F and Skamene E. Bee venom inhibits superoxide production by human neutrophils. Inflammation 1984, 8:385–391.PubMedCrossRefGoogle Scholar
  62. 62.
    Takeshige K and Minakami S. Involvement of calmodulin in phagocytic respiratory burst of leukocytes. Biochim. Biophys. Res. Comm. 1981, 99:484–490.CrossRefGoogle Scholar
  63. 63.
    Smith RJ, Bowman BJ and Iden SS. Effects of trifluoperazine on human neutrophil function. Immunology 1981, 44:677–684.PubMedGoogle Scholar
  64. 64.
    Smolen JE and Weissman G. The roles of extracellular calcium in lysosomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes. Biochim. Biophys. Acta 1980, 677:521–530.Google Scholar
  65. 65.
    Somerfield SD, Stach JL, Mraz C, Gervais F and Skamene E. Bee venom melittin blocks neutrophil 02-production. Inflammation 1986, 10:175–182.PubMedCrossRefGoogle Scholar
  66. 66.
    Rekka E, Kourounakis L and Kourounakis P. Antioxidant activity of and interleukin production affected by honey bee venom. Arzneimittel Forschung-Drug Research 1990, 40:912–913.Google Scholar
  67. 67.
    Chayen J, Bitensky L, Butcher RG, Poulter LW and Ubhi GS. Br. J. Derm. 1970, 82:Suppl. 6, 62 & Beitr. Path. Anat. 1972, 147:6.CrossRefGoogle Scholar
  68. 68.
    Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochim. Biophys. Acta 1986, 859(1):33–48.PubMedCrossRefGoogle Scholar
  69. 69.
    Shkenderov S and Chavdarova V. Effects of melittin on lysosomal membrane stability. Toxicon 1986, 17 (Suppl. 1), 168.Google Scholar
  70. 70.
    Schwartz G and Beschiaschvili G. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim. Biophys. Acta 1989, 979(1):82–90.CrossRefGoogle Scholar
  71. 71.
    Glenn EM and Sekbar N. In: Immunopathology of inflammation. Forscher and Houk Eds., Exc. Med. Amst. 1971. 13.Google Scholar
  72. 72.
    Di Rosa M, Papadimitriou JM and Willonghby DA. A histopathological and pharmacological analysis of the mode of action nonsteroidal antiinflammatory drugs. J. Pathol. 1971, 105:239–256.PubMedCrossRefGoogle Scholar
  73. 73.
    Gencheva G and Shkenderov S. Inhibition of complement activity by certain bee venom components. Academy Bulgaria Science 1986, 39, No.9, 137–139.Google Scholar
  74. 74.
    Menander-Huber J. Melittin bound to calmodulin. NMR assignments and global conformation features. Exp. Biochem. 1980, 112:236.Google Scholar
  75. 75.
    Comte M, Maulte Y and Cox JA. Ca++ dependent high-affinity complex formation between calmodulin and melittin. Biochem. J. 1983, 209:269–272.PubMedGoogle Scholar
  76. 76.
    Jones HP, Chai G and Petrone WF. Calmodulin dependent stimulation of the NADPH oxidase of human neutrophils. Biochim. Biophys. Acta 1982, 714:152–156.PubMedCrossRefGoogle Scholar
  77. 77.
    Barbior BM. The respiratory burst of phagocytes. J. Cin. Invest 1984, 73:599–601.CrossRefGoogle Scholar
  78. 78.
    Banks BE, Dempsey CE, Vernon CA and Yamey J. The mast cell degranulating peptide from bee venom. Physiol. (London) 1980, 308:95–96.Google Scholar
  79. 79.
    Banks BE, Dempsey CE, Vernon CA, Warner JA and Yamey J. Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 40/80 results from mast cell degranulation in vivo. Br. J. Pharmacol. 1990, 99:350–354.PubMedCrossRefGoogle Scholar
  80. 80.
    Habermann E and Breithaupt H. MCD-peptide, a selectively mastolytic factor isolated from bee venom. Naunyn Schmiedeberg Arch. Pharm. Exp. Path. 1968, 260:127–128.CrossRefGoogle Scholar
  81. 81.
    Breithaupt H and Habermann E. MCD-peptide from bee venom: isolation, biochemical and pharmacological proper. Naunyn Schmiedeberg Arch. Pharm. Exp. Path. 1968, 261:252–270.CrossRefGoogle Scholar
  82. 82.
    Zurier RB and Ballas M. Prostagladin El (PGEI) suppression of adjuvant arthritis: Histopathology. Arthritis Rheu. 1973, 16:251–258.CrossRefGoogle Scholar
  83. 83.
    Ziai MR, Russek S, Wang HC, Beer B and Blume AJ. Mast cell degranulating peptide a multi-functional neurotoxin. J. Pharm. Pharmacol. 1990, 42:457–461.PubMedCrossRefGoogle Scholar
  84. 84.
    Forster KA. Forty years of experience with bee venom therapy. Che. Med. 1950.Google Scholar
  85. 85.
    Sergeeva LI. Heparin-induced inhibition of the hemolytic activity of bee venom. Uch. Gor’k. Gos. Univ. 1974, 175:130.Google Scholar
  86. 86.
    Habermann E. Biochemistry, pharmacology and toxicology of honey bee venom. Ergeb. Physiol. 1968, 60:220–325.PubMedGoogle Scholar
  87. 87.
    Meszarors I. Poisoning following bee-wasp stings. Z. Gesamte Inn. Med. 1971, 26:Suppl. 193–195.Google Scholar
  88. 88.
    Hahn G and Ostermayer H. Uber das Bienengift. Ber deutsch Chem. Ges. 1936, 69B: 2407–2419.Google Scholar
  89. 89.
    Wellhoner H. Spinale Wirkungen von Apamin. Naunyn Schmiedebergs Arch. Pharmcol. 1969, 262:29–41.CrossRefGoogle Scholar
  90. 90.
    Vladimirova IA and Shuba MF. The effect of strychnine, hydrastin and apamin on synaptic transmmission in smooth muscle cells. Neirofizologica(Kiew) 1978, 10:295–299.Google Scholar
  91. 91.
    Banks BE, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM and Jenkinson DH. Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 1979, 282: 415–417.PubMedCrossRefGoogle Scholar
  92. 92.
    Maas AJ and Heertog A. The effect of apamin on smooth muscle cells of the guinea-pig Taenia cili. Eur. J. Biochem. 1979, 58:265–270.Google Scholar
  93. 93.
    Muller J and Baer HP. Apamin, a nonspecific antagonist of smooth muscle relaxants. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmacol. 1980, 311:105–107.PubMedCrossRefGoogle Scholar
  94. 94.
    Hugues M, Duval D, Schmid H, Kitabgi P, Lazdunski M and Vincent JP. Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom, with guinea-pig colon. Life Sci. 1982, 31:437–443.PubMedCrossRefGoogle Scholar
  95. 95.
    Lazdunski M, Romey G, Renaud J, Mourre C, Hugues M and Fosset M. The apamin-sensitive Ca++-dependent K+ channel. Handbook of Exp. Pharmacol, Springer-Verlag, 1988, Vol.83, 135–145.CrossRefGoogle Scholar
  96. 96.
    Jenkinson DH. Peripheral actions of apamin. TIPS 1981, 2:333–335.Google Scholar
  97. 97.
    Hugues M, Schmid H, Romey G, Duval D, Freiin C and Lazdinski M. The Ca++-dependent slow K+ conductance in cultured rat muscle cells: Characterization with apamin. EMBO J. 1982, 1: 1039–1042.PubMedGoogle Scholar
  98. 98.
    Burgess GM, Claret M and Jenkinson DH. Effects of quinine and apamin on the calcium dependent potassium permiability of mammalian hepatocytes and red cells. J. Physiol. (London), 1981, 317:67–90.Google Scholar
  99. 99.
    Renaud JF, Desnuelle C, Schmid-Antomarchi H, Hugues M, Serratrice G and Lazdunski. Expression of apamin receptor with muscles of patients with myotonic muscular dystrophy. Nature 1986, 319:678–680.PubMedCrossRefGoogle Scholar
  100. 100.
    Hugues M, Duval D, Kitabgi P, Lazdunski M and Vincent JP. Preparation of pure monoiodo derivative of bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes. J. Biol. Chem. 1982, 257:2762–2769.PubMedGoogle Scholar
  101. 101.
    Habermann E and Cheng-Raude. Central neurotoxicity of apamin, crotamin, phospholipase A2 and alphaamanitin. Toxicon 1975, 13:465–467.PubMedCrossRefGoogle Scholar
  102. 102.
    Vyatchannikov NK and Sinka AY. Effect of melittin, the major constituent of bee venom, on the central nervous system. Farmakol. Toksikol. 1973, 36:625.Google Scholar
  103. 103.
    Mourre C, Hugues M and Lazdunski M. Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca++-dependent K+ channel. Brain Res. 1986, 382:239–249.PubMedCrossRefGoogle Scholar
  104. 104.
    Vick JA, Shipman WH, Brooks RB and Hasset CC. The beta-adrenergic and antiarrythmic effects of apamin, a component of bee venom. Am. Bee J. 1972, 112:339.Google Scholar
  105. 105.
    Vick JA and Brooks RB. Pharmacological studies of the major fractions of bee venom. Am. Bee J. 1972, 112:288.Google Scholar
  106. 106.
    Kireeva VF. Capillary permiability changes resulting from the effect of bee venom. Uch. Zap. Gor’k. Gos. Univ. 1970, 101:113.Google Scholar
  107. 107.
    Beck BF. Bee venom, its nature, and its effects on arthritic and rheumatoid conditions. D. Appleton-Century Co. New York, 1935: pp238, 341 references.Google Scholar
  108. 108.
    Schmidt-Lange W. The germicidal effect of bee venom. Muench. Med. Wchenschr., 1941, 83:935.Google Scholar
  109. 109.
    Ortel S and Markwardt F. Pharmazie 1955, 10:743.PubMedGoogle Scholar
  110. 110.
    Fennell JF, Shipman WH and Cole LJ. Antibacterial action of melittin, a polypeptide from bee venom. Proc. Soc. Exp. Biol. Med. 1968, 127:707–710.PubMedGoogle Scholar
  111. 111.
    Dorman LC and Markey LD. Solid phase synthesis and antibacterial activity of N-terminal sequences of melittin. J. Med. Chem. 1971, 14:5–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Hadjipetrou-Kourounakis L and Yiangou M. Bee venom and adjuvant induced disease. J. Rheumatol. 1984, 1(5):p.720.Google Scholar
  113. 113.
    Shipman WH and Cole LJ. Increased radiation resistance of mice injected with bee venom one day prior to exposure. Report USNRDL-TR-67-4, U.S. Naval Radiological Defense Lab., Dec. 1968, 1-10.Google Scholar
  114. 114.
    Ginsberg NJ, Dauer M and Slotta KH. Melittin used as a protective agent against X-irradiation. Nature 1968, 220:p. 1334.PubMedCrossRefGoogle Scholar
  115. 115.
    Kanno I, Ito Y and Okuyama S. Radioprotection by bee venom. J. Jap. Med. Radiat. 1970, 29:30.Google Scholar
  116. 116.
    Feldberg W and Kellaway CH. Liberation of histamine and its role in the symptomatology of bee venom poisoning. Aust.J.Exp.Biol.Med.Sci. 1937, 127:707.Google Scholar
  117. 117.
    Fredholm B and Haegermark O. Histamine release from rat mast cell granules induced by bee venom fractions. Acta Physiol. Scand. 1967, 71:357.PubMedCrossRefGoogle Scholar
  118. 118.
    Fredholm B and Haegermark O. Studies on the histamine releasing effect of bee venom fractons and compound 48/80 on skin and lung tissue of the rat. Acta Physiol. Scand. 1969, 76:288.PubMedCrossRefGoogle Scholar
  119. 119.
    Shipman WH and Cole LJ. Complex formation between bee venom melittin and extract of mouse skin detected by Sephadex gel filtration. Experientia 1972, 28:171.PubMedCrossRefGoogle Scholar
  120. 120.
    Rauen HM, Schriewer H and Ferie F. Alkylans alkylandum reactons. 10. Antialkylating activity of bee venom, melittin, and apamin. Arzneim-Forsch 1972, 22:1921.Google Scholar
  121. 121.
    Artemov NM, Kireeva VF and Gudenko NA. Effects of bee venom on the blood sugar level. Uch. Zap. Gor’k. Gos. Univ. 1972,5.Google Scholar
  122. 122.
    Kim CM-H. Apitoxin (pure honeybee venom solution) study, a. Safety test (mice, rat); b. Histamine test (cat) c. Antigenicity test (guinea pig, mice, rat); d. Hematophysiological response (human); e. AIDS treatment (human). IV American Apitherapy Conference 1994, Washington, D.C., USA.Google Scholar
  123. 123.
    Perti E. The science of apitherapy today. Dr. Philp Terc, the foremost apitherapist in Central Europe: the principles of his cures of rheumatic diseases with bees. Apitherapy Symposium at Portoroz, 1912.Google Scholar
  124. 124.
    Becker S. Treatment of rheumatic diseases with injectable bee venom. Therapie Der Gegenwart, Heft 6, 1931.Google Scholar
  125. 125.
    Burt JB. Bee venom therapy in chronic rheumatic disorders. Br. J. Phys. Med. 1937, 12:171–172.Google Scholar
  126. 126.
    Kroner J, Nicholls EE, Lintz R, Tyndall M and Anderson M. The treatment of rheumatoid arthritis with injectable form of bee venom. Ann. Int. Med. 1938, 11(7): 1077–1083.CrossRefGoogle Scholar
  127. 127.
    Fellinser E. Application of bee venom in the chronic polyarthritis. Cl. Med. 1954, 27:20–25.Google Scholar
  128. 128.
    Fishkov EL. Therapeutical use of the bee venom preparation. K.F. Clin. Med. 1954, 32:8:20–25.Google Scholar
  129. 129.
    Zaitsev GP and Poriadin VT. The use of bee venom therapy in surgical diseases. Apiculture 1958, 2:47–50.Google Scholar
  130. 130.
    Zaitsev GP and Poriadin VT. Bee venom in the treatment of arterial vessels, diseases of the spine and of circulation. XVII International Apiculture Congress, 1959.Google Scholar
  131. 131.
    Kelman IM. Application of bee venom in sanatorium conditions. Pchelovdstvo 1960, 37(3):52–54.Google Scholar
  132. 132.
    Zaitsev GP and Poriadin VT. Bee venom in the treatment of ankylosing spondylitis and polyarthritis. Moscow National Institute of Medicine, 1961.Google Scholar
  133. 133.
    Steigerwaldt F, Mathies and Damrau F. Standardized bee venom (SBV) therapy of arthritis. Controlled study of 50 cases with 84% benefit. Industrial Medicine and Surgery 1966, 35:1045–1050.PubMedGoogle Scholar
  134. 134.
    Hurkov S. Electrophoresis of the bee venom preparation Melivenon in the treatment of osteoarthritis. Kurort Fizioter 1971, 8:3:128–131.Google Scholar
  135. 135.
    Nikolova V. A study of the therapeutic value of electrophoresis with bee venom in children with rheumatoid arthritis. Problems in Pediatrics 1973, 16:101–106.Google Scholar
  136. 136.
    Zaitsev GP and Poriadin VT. Bee venom in the treatment of the arterial vessels of the extremities and of the diseases of the spine and joints. XVIII Apimondia Congress 1973, 1-9.Google Scholar
  137. 137.
    Serban E. Bee venom and rheumatism. Fr. Rev. Apitherapy, 1981, p.399.Google Scholar
  138. 138.
    Feldsher AS, Solodovnikox GI and Gorobets GN. Bee venom treatment of lumbosacral radiculitis. Feldsher Akush (USSR) 1981, 46(4):55–57.Google Scholar
  139. 139.
    Mund-Hoym WD. A report of the results of treating a total of 211 patients with bee venom. Medical World 1982, 33:34:1174–1177.Google Scholar
  140. 140.
    Forestier F and Palmer M. Apitherapy; rheumatology: 1600 cases investigated throughly. Fr. Rev. Apiculture 1983, p.421.Google Scholar
  141. 141.
    Lonauer G, Meyers A, Kastner D, Kalveram K, Forck G and Gerlach U. Treatment of rheumatoid arthritis with a new, purified bee venom. Abstract.Google Scholar
  142. 142.
    Moore KN. Life without arthritis. What every arthritis sufferer needs to know. R.H.K. Pub., 1987, 1-56.Google Scholar
  143. 143.
    Kim CM-H. Bee venom therapy for arthritis. Rheumatologie 1989, 41:67–72.Google Scholar
  144. 144.
    Klinghardt D. Bee venom therapy for chronic pain. J. Neuro. Ortho. Med. & Surg. 1990, 11:3: 195–197.Google Scholar
  145. 145.
    Ainlay GW. The use of bee venom in the treatment of arthritis and neuritis. Nebraska Med. J. 1939, 24:298–303.Google Scholar
  146. 146.
    Guyton FE. Bee sting therapy for arthritis and neuritis. J. Econ. Entomol. 1947, 40(4):469–472.Google Scholar
  147. 147.
    Guyton FE. Sixteen years of treating arthritis with bee stings. NAAS Proc. 1978, 1:37–41.Google Scholar
  148. 148.
    Yoirish, N. Chapter 4. Therapeutic uses of bee venom. Curative properties of honey and bee venom. New Glide Pub. 1977, pp. 144-171.Google Scholar
  149. 149.
    Broadman J. Bee venom: the natural curative for arthritis and rheumatism. G.P.Putnam’s sons, New York 1962, pp220, 169 references.Google Scholar
  150. 150.
    Saine J. The effectiveness of bee venom in the treatment of arthritis. NAAS Proc. 1978, 1:25–32.Google Scholar
  151. 151.
    Baker WP. The effectiveness of bee venom in the treatment of arthritis. NAAS Proc. 1980, 3:47–49.Google Scholar
  152. 152.
    Baker WP. Homeopathic bee venom therapy. NAAS Proc. 1982, 5:15–16.Google Scholar
  153. 153.
    Kazior A. Peculiar way of bee venom application in painful diseases of the spine. International Symposium on Apitherapy. Apimondia, 1985.Google Scholar
  154. 154.
    Kim CM-H. Honey bee venom therapy for arthritis (RA, OA), fibromyositis (FM) and peripheral neuritis (PN). Pain, J. of the Korean Pain Society 1992, 1(1):55–65.Google Scholar
  155. 155.
    Weeks B. Personal Communication, 1994.Google Scholar
  156. 156.
    Nicholas EE. Rheumatoid arthritis treatment with the sting of the honey bee. N.Y. St. Med. J. 1938, 38:1218.Google Scholar
  157. 157.
    Hollander JL. Bee venom in the treatment of chronic arthritis. Am. J. Med. Sci. 1941, 261:796–801.CrossRefGoogle Scholar
  158. 158.
    Wiessmann G, Zurier RB, Mitnick D and Bloomgarden D. Effects of bee venom of experimental arthritis. Ann. Rheum. Dis. 1973, 32:466–470.CrossRefGoogle Scholar
  159. 159.
    Eiseman JL, Bredow JV and Alvares AP. Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochem. Pharmacol. 1982, 31:1139–1146.PubMedCrossRefGoogle Scholar
  160. 160.
    Tannenbaum H and Greenspoon M. Bee venom and adjuvant induced disease (Letter). J. Rheumatol. 1983, 10:522.Google Scholar
  161. 161.
    Vick JA, Warren GB and Brooks RB. The effects of whole bee venom on cage activity and plasma Cortisol levels in the arthritiv dog. Inflammation 1975, Vol.1, No.2: 167-174.Google Scholar
  162. 162.
    Short T, Jackson R and Beard G. Usefulness of bee venom therapy in canine arthritis. NAAS Proc. 1979, 2:13–17.Google Scholar
  163. 163.
    Von Bredow. Treatment of equine arthritis with bee venom. NAAS Proc. 1978, 1:141–146.Google Scholar
  164. 164.
    Von Bredow J, Short T, Beard G and Reid K. Effectiveness of bee venom therapy in the treatment of canine arthritis. NAAS Proc. 1981, 4:45–48.Google Scholar
  165. 165.
    Holmes ERC. Personal Communication.Google Scholar
  166. 166.
    Hawley DJ and Wolfe F. Are the results of controlled clinical trials and observational studies of second line therapy in rheumatoid arthritis valid and generalizable as measured of rheumatoid arthritis outcome: analysis of 122 studies. J. Rheum. 1991, 18:1008–1014.PubMedGoogle Scholar
  167. 167.
    Hard R, Goddard P and Dieppe PA. The clinical and radiological correlations in osteoarthritis. Ann. Rheum. Dis. 1991, 50:14–19.CrossRefGoogle Scholar
  168. 168.
    Bagge E, Bjelle A, Eden S and Svanborg A. Osteoarthritis in the elderly: clinical and radiological findings in 79-and 85-year-olds. Ann. Rheum. Dis. 1991, 50:535–539.PubMedCrossRefGoogle Scholar
  169. 169.
    Gordon DA. The importance of therapeutic experiments. Notes on rheumatology by the French Arthritis Society, 1992.Google Scholar
  170. 170.
    Wilske KR and Healey LA. The need for aggressive therapy of rheumatoid arthritis. Current controversies in clinical rheumatology. Rheum. Dis. Clin, of N. Am. 1993, 19(1):153–161.Google Scholar
  171. 171.
    Kushner I and Dawson NV. Aggressive therapy does not substantially alter the long-term course of rheumatoid arthritis. Current controversies in clinical rheumatology. Rheum. Dis. Clin. N. Am. 1993, 19(1): 163–172.Google Scholar
  172. 172.
    Yunginger KW, Jones RT, Leiferman KM, Pauli BR, Welsh PW and Gleich GJ. Immunological and biological studies in beekeepers and their family members. J. Allergy Clin. Immunol. 1978, 61:2: 93–101.PubMedGoogle Scholar
  173. 173.
    Apitherapy. Alternative Medicine: Expanding Medical Horizons. A report to the NIH on alternative medical system and practices in the United States. NIH Pub. No. 94-06 (1994.12): 172-175,178.Google Scholar
  174. 174.
    Apivene. Monography. Laboratories H. Porcin, Paris.Google Scholar
  175. 175.
    Artemov NM, Orlov BN. New data to scientifically support the physiological use of bee venom as a medicine. Apimondia, The XXI International Congress, 1967: 348-353.Google Scholar
  176. 176.
    Artemov NM. Bee venom, its physiological properties and therapeutic uses. M.L. 188, 1941.Google Scholar
  177. 177.
    Bohmer D and Ambrus P. The effect of Forapin ointment containing bee venom on blood circulation in muscles. Therpiewoche 1981, 31:5892–5894.Google Scholar
  178. 178.
    Broadman J. A review of the foreign literature on bee venom for the treatment of all rheumatism. General Practice 1958, 8:13, 26, 28-29.Google Scholar
  179. 179.
    Donadieu Y. Medicine and apiculture: several practical and essential comments on todays therapeutical use of bee venom, part 2. Fr. Rev. Apiculture, April 1980, p.383.Google Scholar
  180. 180.
    Forapin. Monography. Mack Lab., Allemagne, Germany.Google Scholar
  181. 181.
    Forestier F and Palmer M. Apitherapy; rheumatology: a therapy that is always young. Fr. Rev. Apiculture 1986, p.455.Google Scholar
  182. 182.
    Giza J. Bee venom therapy (Apitoxitherapy) associated with acupuncture. International Symposium on Apitherapy. Apimondia 1985, p.58.Google Scholar
  183. 183.
    Homeopathic Pharmacopeia of the U.S. Apis mellifera and apis virus. 1981 Ed., pp.88-90.Google Scholar
  184. 184.
    Kononenko IF. Bee venom preparation “Melissin” as a remedy and disease preventing agent. XVII International Congress of Apiculture, Rome, 1958.Google Scholar
  185. 185.
    Maberly FH. Brief notes on the treatment of rheumatism by bee stings. Lancet 1910, 2: p.235.CrossRefGoogle Scholar
  186. 186.
    Parteniu A. Bee venom and arterial diseases. Treatment of peripheral arterial diseases and arterioscleroses by means of bee stings applied at lumbar trigger points. (Rumania-Abst.)Google Scholar
  187. 187.
    Pharmalgen. Monography. Pharmacia.Google Scholar
  188. 188.
    Pochinkova P. Administration of bee venom by ultrasounds. XVII International Symposium on Apitherapy. Apimondia 1973, 111-113.Google Scholar
  189. 189.
    Tadeusz O. Apipuncture (Bee Acupuncture). Fr. Rev. Apiculture 1987, 465:1–11.Google Scholar
  190. 190.
    Terc P. Report about a peculiar connection between the beestings and rheumatism. Vienna Medical Press, 1888.Google Scholar
  191. 191.
    Ven-AB. Monography. Lancet Lab., Montreal.Google Scholar
  192. 192.
    Venomil. Monography. Hollister-Stier/Miles.Google Scholar
  193. 193.
    Kim CM-H. Effectiveness of bee venom therapy, 10 years treatment. XXXIII Apimondia Congress 1993, Beijing, China.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Christopher M.-H. Kim
    • 1
  1. 1.International Pain Institute, Inc.Red BankUSA

Personalised recommendations