Skip to main content

Measurement of Cytochrome Oxidase Redox State by Near Infrared Spectroscopy

  • Chapter
Optical Imaging of Brain Function and Metabolism 2

Abstract

Although near infrared spectroscopy (NIRS) is primarily used to probe changes in oxyhaemoglobin (HbO2) and deoxyhaemoglobin (dHb) concentrations, it has long been realised that there is a significant oxygen-concentration dependent near infrared signal from the mitochondrial enzyme cytochrome c oxidase. In this paper we discuss the origins of this near infrared (NIR) signal, the possible factors affecting its intensity and its likely physiological and clinical significance. This paper complements our recent review on this subject1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper C. E., Matcher S. J., Wyatt J. S., Cope M., Brown G. C., Nemoto E. M., Delpy D. T. 1994, Near infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics, Biochem. Soc. Trans. 22:974–980.

    Google Scholar 

  2. Babcock G. T., Wikström M. 1992, Oxygen Activation and the conservation of energy in cell respiration, Nature 356:301–309.

    Article  ADS  Google Scholar 

  3. Cooper C. E. 1990, The steady state oxidation of cytochrome c by cytochrome c oxidase, Biochim. Biophys. Acta 1017:187–223.

    Article  Google Scholar 

  4. Brown G. C. 1992, Control of respiration and ATP synthesis in mammalian mitochondria and cells, Biochem. J. 284:1–13.

    Google Scholar 

  5. Iwata S., Ostermeier C., Ludwig B., Michel H. 1995, Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature 376:660–669.

    Article  Google Scholar 

  6. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. 1995, Structures of Metal Sites of Oxidized Bovine Heart Cytochrome c Oxidase at 2.8Å, Science 269:1069–1074.

    Article  ADS  Google Scholar 

  7. Wharton D. C., Tzagoloff A. 1964, Studies on the electron transfer system. LVII. The near infrared absorption band of cytochrome oxidase, J. Biol. Chem. 239:2036–2040.

    Google Scholar 

  8. Boelens R., Wever R., Gelder B. F. v. 1982, Electron transfer after flash photolysis of mixed-valence car-boxycytochrome c oxidase, Biochim. Biophys. Acta 682:264–272.

    Article  Google Scholar 

  9. Boelens R., Wever R. 1980, Redox reactions in mixed-valence cytochrome oxidase, FEBS Lett. 116:223–226.

    Article  Google Scholar 

  10. Erecinska M., Chance B., Wilson D. F. 1971, The oxidation-reduction potential of the copper signal in pigeon heart mitochondria, FEBS Lett. 16:284–286.

    Article  Google Scholar 

  11. Hartzell C. R., Hansen R. E., Beinert H. 1973, Electron Carriers of Cytochrome Oxidase Detectable by Electron Paramagnetic Resonance and Their Relationship to Those Traditionally Recognized in This Enzyme, Proc. Natl. Acad. Sci. USA 70:2477–2481.

    Article  ADS  Google Scholar 

  12. Kelly M., Lappalainen P., Talbo G., Haltia T., van der Oost J., Saraste M. 1993, Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center, J Biol Chem 268:16781–7.

    Google Scholar 

  13. Ingledew W. J., Bacon M., Rich P. R. 1992, Characterisation of a near infra-red absorption band of the Eschericia coli quinol oxidase, cytochrome o, which is attributable to the high-spin ferrous haem of the binuclear site, FEBS Lett. 305:167–170.

    Article  Google Scholar 

  14. Henning W., Vo L., Albanese J., Hill B. C. 1995, High-yield purification of cytochrome aa 3 and cytochrome caa 3 oxidases from Bacillus subtilis plasma membranes, Biochem. J. 309:279–283.

    Google Scholar 

  15. Ferrari M., Hanley D. F., Wilson D. A., Traystman R. J. 1990, Redox changes in cat brain cytochrome c oxidase after blood-fluorocarbon exchange, Am. J. Physiol. 258:H1706–1713.

    Google Scholar 

  16. Miyake H., Nioka S., Zaman A., Smith D. S., Chance B. 1991, The Detection of Cytochrome Oxidase Heme Iron and Copper Absorption in the Blood-Perfused and Blood-Free Brain in Normoxia and Hypoxia, Anal. Biochem. 192:149–155.

    Article  Google Scholar 

  17. Cope M. The application of near infrared spectroscopy to non-invasive monitoring of cerebral oxygenation in the newborn infant, PhD Thesis. University of London, 1991.

    Google Scholar 

  18. Cope M., van der Zee P., Essenpreis M., Arridge S. R., Delpy D. T. 1991, Data analysis methods for near infrared spectroscopy of tissue: problems in determining the relative cytochrome aa3 concentration, Proc. SPIE 1431:251–262.

    Article  ADS  Google Scholar 

  19. Matcher S. J., Elwell C. E., Cooper C. E., Cope M., Delpy D. T. 1995, Performance Comparison of Several Published Tissue Near-Infrared Spectroscopy Algorithms, Anal. Biochem. 227:54–68.

    Article  Google Scholar 

  20. Jöbsis F. F. 1977, Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198:1264–1267.

    Article  ADS  Google Scholar 

  21. Inagaki M., Tamura M. 1993, Preparation and Optical Characteristics of Hemoglobin-Free Isolated Perfused Rat Head In Situ, J. Biochem. 113:650–657.

    Google Scholar 

  22. Tamura M. 1993, Non-invasive monitoring of the redox state of cytochrome oxidase in living tissue using near-infrared laser lights, Jpn. Circ. J. 57:817–24.

    Article  Google Scholar 

  23. Piantadosi C. A. 1993, Absorption Spectroscopy for Assessment of Mitochondrial Function in Vivo, Methods Toxicol. 2:107–126.

    Google Scholar 

  24. Piantadosi C. A., Sylvia A. L. 1984, Cerebral cytochrome aa 3 inhibition by cyanide in bloodless rats, Toxicology 33:67–79.

    Article  Google Scholar 

  25. Tamura M. 1992, Protective effects of a PG12 analogue OP-2507 on hemorrhagic shock in rats, Jpn. Circ. J. 56:366–375.

    Article  Google Scholar 

  26. Wray S., Cope ML, Delpy D. T., Wyatt J. S., Reynolds E. O. R. 1988, Characterisation of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation, Biochim. Biophys. Acta 933:184–192.

    Article  Google Scholar 

  27. Kurth C. D., Steven J. M., Benaron D., Chance B. 1993, Near-infrared monitoring of the cerebral circulation, J Clin Monit 9:163–70.

    Article  Google Scholar 

  28. Cooper C. E., Elwell C. E., Meek J. H., Matcher S. J., Wyatt J. S., Cope M., Delpy D. T. 1996, The non-invasive measurement of absolute cerebral deoxyhaemoglobin concentration and mean optical pathlength in the neonatal brain by second derivative near infrared spectroscopy, Pediatr. Res. In press.

    Google Scholar 

  29. Chance B., Hollunger G. 1963, Inhibition of electron and energy transfer in mitochondria, 1; Effects of amytal, thiopental, rotenone, progesterone and methylone glycol, J. Biol. Chem. 278:418–431.

    Google Scholar 

  30. Fujii T. 1991, Profiles of percent reduction of cytochromes in guinea pig hippocampal brain slices in vitro, Brain Res 540:224–8.

    Article  Google Scholar 

  31. Hatefi Y. 1968, Flavoproteins of the electron transport system and the site of action of amytal, rotenone, and piericidin A, Proc. Natl. Acad. Sci. USA 60:733–740.

    Article  ADS  Google Scholar 

  32. Hoshi Y., Tamura M. 1993, Dynamic changes in cerebral oxygenation in chemically induced seizures in rats: study by near-infrared spectrophotometry, Brain Res 603:215–21.

    Article  Google Scholar 

  33. McCormack J. G. 1985, Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria, Biochem. J. 231:581–595.

    Google Scholar 

  34. Wilson D. F., Erecinska M., Drown C, Silver I. A. 1979, The oxygen dependence of cellular energy metabolism, Archiv. Biochem. Biophys. 195:485–493.

    Article  Google Scholar 

  35. Wilson D. F., Rumsey W. L., Green T. J., Vanderkooi J. M. 1988, The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration, J. Biol. Chem. 263:2712–2718.

    Google Scholar 

  36. Hampson N. B., Camporesi E. M., Stolp B. W., Moon R. E., Shook J. E., Gabriel J. A., Piantadosi C. A. 1990, Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans, J. Appl. Physiol. 69:907–913.

    Google Scholar 

  37. Sylvia A. L., Piantadosi C. A., Jöbsis-VanderVliet F. F. 1986, Cerebral bioenergetics and in vivo cytochrome c oxidase redox relationships, Adv. Exp. Med. Biol. 191:815–821.

    Article  Google Scholar 

  38. Edwards A. D., Brown G. C, Cope M., Wyatt J. S., McCormick D. C., Roth S. C., Delpy D. T., Reynolds E. O. R. 1991, Quantification of changes in the concentration of cerebral oxidised cytochrome oxidase, J. Appl. Physiol. 71:1907–1913.

    Google Scholar 

  39. Ferrari M., de Blasi R., Safoue F., Wei Q., Zaccanti G. 1993, Towards human brain near infrared imaging: time resolved and unresolved spectroscopy during hypoxic hypoxia, Adv. Exp. Biol. Med. 333:21–31.

    Article  Google Scholar 

  40. Bashford C. L., Barlow C. H., Chance B., Haselgrove J. 1980, The oxidation-reduction state of cytochrome oxidase in freeze-trapped gerbil brain, FEBS Lett. 113:78–80.

    Article  Google Scholar 

  41. Hazeki O., Seiyama A., Tamura M. 1987, Near-infrared spectrophotometric monitoring of haemoglobin and cytochrome a, a3 in situ, Adv. Exp. Med. Biol. 215:283–289.

    Article  Google Scholar 

  42. Jones D. P. 1986, Intracellular diffusion gradients of O2 and ATP, Am. J. Physiol. 250:C663–C675.

    Google Scholar 

  43. Brown G. C. 1995, Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase, FEBS Lett. 369:136–139.

    Article  Google Scholar 

  44. Brown G. C, Cooper C. E. 1994, Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal cytochrome oxidase respiration by competing with oxygen at cytochrome oxidase, FEBS Lett. 356:295–298.

    Article  Google Scholar 

  45. Siesjo B. K. 1978 Brain Energy Metabolism, John Wiley & Sons, Chichester.

    Google Scholar 

  46. Sylvia A. I., Piantadosi C. A. 1988, O2 dependance of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8:163–172.

    Article  Google Scholar 

  47. Ferrari M, Williams M. A., Wilson D. A., Thakor N., Traystman R. J., Hanley D. F. 1995, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood-fluorocarbon exchange transfusion, Am. J. Physiol. 269:H417–H424.

    Google Scholar 

  48. Brown G. C., Crompton M., Wray S. 1991, Cytochrome oxidase content of rat brain during development, Biochim. Biophys. Acta 1057:273–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooper, C.E. et al. (1997). Measurement of Cytochrome Oxidase Redox State by Near Infrared Spectroscopy. In: Villringer, A., Dirnagl, U. (eds) Optical Imaging of Brain Function and Metabolism 2. Advances in Experimental Medicine and Biology, vol 413. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0056-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0056-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0058-6

  • Online ISBN: 978-1-4899-0056-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics