Intersubject Analysis of FMRI Data Using Spatial Normalization

  • Thomas A. Zeffiro
  • G. F. Eden
  • R. P. Woods
  • J. W. VanMeter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)


Most approaches to the analysis of functional magnetic resonance imaging (fMRI) datasets have employed statistical analysis of data from single subjects. Although these approaches allow reliable detection of the location of task-related signal changes, they provide no mechanism to test statistical hypotheses concerning the behavior of the subject group as a whole (Bandettini et al, 1993; Friston et al., 1994). Neuroanatomical response localization is usually accomplished by visually examining the location and extent of the observed signal change with reference to a coplanar higher resolution image in which sulcal and gyral landmarks are more easily seen. Although accurate, this approach limits the range of signal amplitude changes studied to those detectable in every subject and cannot take advantage of the increased sensitivity possible with intersubject averaging techniques.


Positron Emission Tomography Spatial Normalization Blood Oxygen Level Dependent Echo Planar Imaging Lingual Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandettini, P.A., Jesmanowicz, E.C., Wong, E.C., Hyde, J., 1993, Processing strategies for time-course data sets in functional brain MRI of the human brain, Magn. Reson. Med. 30:161–173.CrossRefGoogle Scholar
  2. Eden G.F., VanMeter J.W., Rumsey J.M., Maisog J.M., Woods R.P., Zeffiro T.A., 1996, Abnormal processing of visual motion in dyslexia. Nature (in press).Google Scholar
  3. Fox, P., Perlmutter, J. and Raichle, M., 1985, A stereotactic method of anatomical localization for PET, J. Comput. Assist. Tomogr. 9:141–153.CrossRefGoogle Scholar
  4. Fox, P.T., Miezin, F.M., Allman, J.M., Van Essen, D.C., and Raichle, M.E., 1987, Retinotopic organization of human visual cortex mapped with Positron Emission Tomography, J Neurosci 7:913–922.Google Scholar
  5. Friston, K.J., Frith, C.D., Liddle, P.E. and Frackowiak, R.S.J., 1991a, Comparing functional (PET) images: The assessment of significant change, J. Cereb. Blood Flow Metab. 11:690–9.CrossRefGoogle Scholar
  6. Friston, K.J., Frith, CD., Liddle, P.E. and Frackowiak, R.S.J., 1991b, Plastic transformation of PET images, J. Comput. Assist. Tomogr. 15:634–39.CrossRefGoogle Scholar
  7. Friston, K.J., Jezzard, P., and Turner, R., 1994, Analysis of functional MRI time series, Human Brain Mapping 1:153–171.CrossRefGoogle Scholar
  8. Friston, K.J., Holmes, A.P., Poline, J.-B., Grasby, P.J., Williams, S.C.R., Frackowiak, R.S.J., and Turner, R., 1995, Analysis of fMRI time-series revisited, Neurolmage 2:45–53.CrossRefGoogle Scholar
  9. Jezzard, P., and Balaban, R.S., 1995, Correction for geometric field distortion in echo planar images from B0 field variations, Magn. Reson. Med. 34:65–73.CrossRefGoogle Scholar
  10. Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.-M., Brady, T.J., and Rosen, B.R., 1992, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc Natl Acad Sci (USA) 89:5675–5679.ADSCrossRefGoogle Scholar
  11. Le Bihan, D., Turner, R., Zeffiro, T, Cuenod, C, Jezzard, P., 1993, Activation of human primary visual cortex during mental imagery, Proc Nat Acad Sci (USA) 90:11802.ADSCrossRefGoogle Scholar
  12. Sergent, J., Ohta, S., and MacDonald, B., 1992, Functional neuroanatomy of face and object processing, Brain 115:15–36.CrossRefGoogle Scholar
  13. Talairach, J., and Tournoux, P., 1988, A Coplanar Stereotaxic Atlas of a Human Brain, Thieme, Stuttgart.Google Scholar
  14. Talairach, J., and Szikla, G., 1967, Atlas D’Anatomie Stereotaxique du Telencephale, Masson C.; Paris.Google Scholar
  15. Turner, R., Jezzard, P., Wen, H., Kwong, K., LeBihan, D., Zeffiro, T. and Balaban, R., 1993, Functional mapping of the human visual cortex at 4 Tesla and 1.5 Tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279.CrossRefGoogle Scholar
  16. Watson, J.D.G., Myers, R., Frackowiak, R.S.J., Hajnal, J.V., Woods, R.P., Mazziotta, J.C., Shipp, S., Zeki, S., 1993, Cerebral Cortex 3:79–94.CrossRefGoogle Scholar
  17. Woods, R.P., Cherry, S.R., and Mazziotta, J.C., 1992, Rapid automated algorithm for aligning and reslicing PET images, J. Comput. Assist. Tomogr., 16:620–633.CrossRefGoogle Scholar
  18. Worsley, K.J., Evans, A.C., Marrett, S., and Neelin, P., 1992, A three-dimensional statistical analysis for rCBF activation studies in human brain, J. Cereb. Blood Flow Metab. 12:900–918.CrossRefGoogle Scholar
  19. Zeki, S., Watson, J.D.G., Lueck, C.J., Friston, K.F., Kennard, C., and Frackowiak, R.S.J., 1991, A direct demonstration of functional specialization in human visual cortex, J Neurosci 11:641–649.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Thomas A. Zeffiro
    • 1
    • 4
  • G. F. Eden
    • 2
  • R. P. Woods
    • 3
  • J. W. VanMeter
    • 4
  1. 1.Laboratory of Diagnostic Radiology Research, ODNational Institutes of HealthBethesdaUSA
  2. 2.Section on Functional Brain Imaging, NIMHNational Institutes of HealthBethesdaUSA
  3. 3.Department of NeurologyUCLA School of MedicineLos AngelesUSA
  4. 4.Sensor Systems, IncSterlingUSA

Personalised recommendations