Linking Cerebral Blood Oxygenation to Human Brain Function

Current Issues for Human Neuroscience by Magnetic Resonance Neuroimaging
  • A. Kleinschmidt
  • J. Frahm
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)


The human brain has remained not only the most interesting but also least understood nervous system as ethical considerations preclude the use of invasive procedures in its study. Indeed, most of our concepts of human neuronal function have been fostered by data obtained in animal studies. Preparations of cell cultures, brain slices, or trained awake animals suffer from the risk that even microscopic response properties may be altered by the artifactual experimental setting as compared to their characteristics in the intact and unmanipulated condition. Moreover, the homology assumption necessary in this context appears the less justified the more complex the feature under investigation, e.g. with respect to cognitive functions. This consideration fuels the interest in methods that are not at all or only minimally invasive and can therefore be applied in healthy human subjects. Of the two principal approaches that measure phenomena accompanying neuronal activity, i.e. the scalp recording of electromagnetic fields and the tomographic imaging of circulatory or metabolic states, this presentation focusses on the usefulness of the latter approach and specifically discusses the implementation of magnetic resonance imaging (MRI) sensitized to changes in cerebral blood oxygenation (CBO).


Positron Emission Tomography Functional Magnetic Resonance Imaging Human Brain Function Cerebral Blood Flow Change Cerebral Blood Flow Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandettini, P. A., Jesmanowicz, A., Wong, E. C., Hyde, J. S., 1993, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. 30:161–173.CrossRefGoogle Scholar
  2. Boecker, H., Kleinschmidt, A., Weindl, A., Conrad, B., Hänicke, W., Frahm, J., 1994, Dysfunctional activation of subcortical nuclei in palatal myoclonus detected by high-resolution MRI, NMR Biomed. 7:327–329.CrossRefGoogle Scholar
  3. Bruhn, H., Kleinschmidt, A., Boecker, H., Merboldt, K.-D., Hänicke, W., Frahm, J., 1994, The effect of acetazolamide on regional cerebral blood oxygenation at rest and under stimulation as assessed by MRI, J. Cereb. Blood Flow Metab. 14:742–748.CrossRefGoogle Scholar
  4. Clark, V. P., Courchesne, E., Grafe, M., 1992, In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging, Cerebral Cortex 2:417–424.CrossRefGoogle Scholar
  5. DeYoe, E. A., Neitz, J., Carman, G., Miller, D., Schmit, P., Glickman, S., Wieser, J., 1995, Topographic mapping of striate and extrastriate visual areas in human cerebral cortex using an active visual task, Human Brain Mapping, Suppl. 1, 27.Google Scholar
  6. Fox, P. T., Raichle, M. E., 1986, Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects, Proc. Natl. Acad. Sci. USA 83:1140–1144.ADSCrossRefGoogle Scholar
  7. Frahm, J., Bruhn, H., Merboldt, K.-D., Hänicke, W., 1992, Dynamic MR imaging of human brain oxygenation during rest and photic stimulation, J. Magn. Reson. Imag. 2:501–505.CrossRefGoogle Scholar
  8. Frahm, J., Merboldt, K.-D., Hänicke, W., 1993, Functional MRI of human brain activation at high spatial resolution, Magn. Reson. Med. 29:139–144.CrossRefGoogle Scholar
  9. Frahm, J., Merboldt, K.-D., Hänicke, W., Kleinschmidt, A., Boecker, H., 1994, Brain or vein — oxygenation or flow? On signal physiology in functional MRI of human brain activation, NMR Biomed. 7:45–53.CrossRefGoogle Scholar
  10. Friston, K.J., Frith, C. D., Liddle, P. F., Dolan, R. J., Lammertsma, A. A., Frackowiak, R. S. J., 1990, The relationship between global and local changes in PET scans, J. Cereb. Blood Flow Metab. 10:458–466.CrossRefGoogle Scholar
  11. Frostig, R. D., Lieke, E. E., Ts’o, D Y., Grinvald, A., 1990, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. USA 87:6082–6086.ADSCrossRefGoogle Scholar
  12. Hajnal, J. V., Myers, R., Oatridge, A., Schwieso, J. E., Young, I. R., Bydder, G. M, 1994, Artifacts due to stimulus correlated motion in functional imaging of the brain, Magn. Reson. Med. 31:1–9.CrossRefGoogle Scholar
  13. Hyde, J. S., Biswal, B., Yetkin, F. Z., Haughton, V. M., 1995, Functional connectivity determined from analysis of physiological fluctuations in a series of echo-planar images, Human Brain Mapping, Suppl. 1, 287.Google Scholar
  14. Jack, C. R., Thompson, R. M., Butts, R. K., Sharbrough, F. W., Kelly, P. J., Hanson, D. P., Riederer, S. J., Ehman, R. L., Hangiandreou, N. J., Cascino, G. D., 1994, Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping, Radiology 190:85–92.Google Scholar
  15. Jackson, G. D., Connelly, A., Cross, J. H., Gordon, I., Gadian, D. G., 1994, Functional magnetic resonance imaging of focal seizures, Neurology 44:850–856.CrossRefGoogle Scholar
  16. Jueptner, M., Weiller, C, 1995, Review: Does measurement of regional cerebral blood flow reflect synaptic activity? — implications for PET and fMRI, NeuroImage 2:48–156.CrossRefGoogle Scholar
  17. Kleinschmidt, A., Boecker, H., Bruhn, H., Merboldt, K.-D., Hänicke, W., Sitzer, M., Steinmetz, H., Frahm, J., 1994a, MRI of cerebral blood oxygenation changes under acetazolamide in normal volunteers and patients with carotid occlusive disease, SMR Book of Abstracts, p. 438.Google Scholar
  18. Kleinschmidt, A., Merboldt, K.-D., Hänicke, W., Steinmetz, H., Frahm, J., 1994b, Correlational imaging of thalamocortical coupling in the primary visual pathway of the human brain, J. Cereb. Blood Flow Metab. 14:952–957.CrossRefGoogle Scholar
  19. Kleinschmidt, A., Nitschke, M. F., Requardt, M., Frahm, J., 1995a, How somatotopic is the human motor cortex hand area? Human Brain Mapping, Suppl. 1, 284.Google Scholar
  20. Kleinschmidt, A., Steinmetz, H., Sitzer, M., Merboldt, K.-D., Frahm, J., 1995b, Magnetic Resonance Imaging of regional cerebral blood oxygenation changes under acetazolamide in carotid occlusive disease, Stroke 26:106–110.CrossRefGoogle Scholar
  21. Kleinschmidt, A., Lee, B. B., Requardt, M., Frahm, J., 1995c, Functional mapping of color processing by magnetic resonance imaging of responses to selective P-and M-pathway stimulation, Human Brain Mapping, Suppl. 1, 50.Google Scholar
  22. Kleinschmidt, A., Bruhn, H., Steinmetz, H., Frahm, J., 1995d, Pharmacologic manipulation of vasomotor tone studied by magnetic resonance imaging of cerebral blood oxygenation, J. Cereb. Blood Flow Metab. 15, Suppl. 1, S527.Google Scholar
  23. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R., Cheng, H.-M., Brady, T. J., Rosen, B. R., 1992, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. USA 89:5675–5679.ADSCrossRefGoogle Scholar
  24. Malonek, D., Grinvald, A., 1995, Local autoregulation of cerebral blood flow and blood volume following natural stimulation revealed by optical imaging and spectroscopy of HbO2 and rHb, J. Cereb. Blood Flow Metab. 15, Suppl. 1, S79.Google Scholar
  25. Marrett, S., Meyer, E., Kuwabara, H., Evans, A., Gjedde, A., 1995, Differential increases of oxygen metabolism in visual cortex, J. Cereb. Blood Flow Metab. 15, Suppl. 1, S80.Google Scholar
  26. Merboldt, K.-D., Krüger, G., Hänicke, W., Kleinschmidt, A., Frahm, J., 1995, Functional MRI of human brain activation combining high spatial and temporal resolution by a CINE FLASH technique, Magn. Reson. Med., in press.Google Scholar
  27. Obrig, H., Kleinschmidt, A., Merboldt, K.-D., Dirnagl, U., Frahm, J., Villringer, A., 1994, Monitoring of cerebral blood oxygenation during human brain activation by simultaneous high-resolution MRI and near-infrared spectroscopy, SMR Book of Abstracts 67.Google Scholar
  28. Ogawa, S., Lee, T. M., Nayak, A. S., Glynn, P., 1990, Oxygenation-sensitive contrast in magnetic resonance images of rodent brain at high magnetic fields, Magn. Reson. Med. 14:68–78.CrossRefGoogle Scholar
  29. Pauling, L., Coryell, C. D., 1936, The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbonmonoxyhemoglobin, Proc. Natl. Acad. Sci. USA 22:210–216.ADSCrossRefGoogle Scholar
  30. Prielmeier, F., Merboldt, K.-D., Hänicke, W., Frahm, J., 1993, Dynamic high-resolution MR imaging of brain deoxygenation during transient anoxia in the anesthetized rat, J. Cereb. Blood Flow Metab. 13:889–894.CrossRefGoogle Scholar
  31. Prielmeier, F., Nagatomo, Y., Frahm, J., 1994, Cerebral blood oxygenation in rat brain during hypoxic hypoxia. Quantitative MRI of effective transverse relaxation rates, Magn. Reson. Med. 31:678–681.CrossRefGoogle Scholar
  32. Rademacher, J., Caviness, V. S., Steinmetz, H., Galaburda, A. M., 1993, Topographical variation of the human primary cortices: implications for neuroimaging and brain mapping studies, Cerebral Cortex 3:313–329.CrossRefGoogle Scholar
  33. Segebarth, C., Belle, V., Delon, C, Massarelli, R., Decety, J., LeBas, J.-F., Decorps, M., Benabid, A. L., 1994, Functional MRI of the human brain: predominance of signals from extracerebral veins, NeuroReport 5:813–816.CrossRefGoogle Scholar
  34. Seitz, R. J., Böhm, C., Greitz, T., Roland, P. E., Eriksson, L., Blomqvist, G., Rosenqvist, G., Nordell, B., 1990, Accuracy and precision of the computerized brain atlas programme for localization and quantification in positron emission tomography, J. Cereb. Blood Flow Metab. 10:443–457.CrossRefGoogle Scholar
  35. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., Tootell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional MRI, Science 268:889–893.ADSCrossRefGoogle Scholar
  36. Sitzer, M., Knorr, U., Seitz, R. J., 1995, Cerebral hemodynaniics during sensorimotor activation in humans, J. Appl. Physiol. 77:2804–2811.CrossRefGoogle Scholar
  37. Turner, R., LeBihan, D., Moonen, C. T. W., DesPres, D., Frank, J., 1991, Echo-planar time course MRI of cat brain oxygenation changes, Magn. Reson. Med. 22:159–166.CrossRefGoogle Scholar
  38. Villringer, A., Dirnagl, U., 1995, Coupling of brain activity and cerebral blood flow — basis of functional neuroimaging, Cerebrovasc. Brain Metab. Rev., in press.Google Scholar
  39. Woolsey, T. A., Rovainen, C. M., 1991, Whisker barrels: a model for direct observation of changes in the cerebral microcirculation with neuronal activity. In: Brain Work and Mental Activity, Alfred Benzon Symposium 31 (eds. N. A. Lassen, D. H. Ingvar, M. E. Raichle, L. Friberg), Munksgaard, Copenhagen, p. 189-198.Google Scholar
  40. Zheng, D., Lamantia, A. S., Purves, D., 1991, Specialized vascularization of the primate visual cortex, J. Neurosci. 11:2622–2629.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • A. Kleinschmidt
    • 1
  • J. Frahm
    • 1
  1. 1.Biomedizinische NMR Forschungs GmbHMax-Planck-Institut für biophysikalische ChemieGöttingenGermany

Personalised recommendations