Metabolic Aspects of Neurovascular Coupling

  • Ulrich Dirnagl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 413)


In the previous chapter it was demonstrated that functional neuroimaging relies on the coupling of neuronal activity and cerebral blood flow. What is the function of neurovascular coupling? Does it serve to provide a constant glucose or oxygen delivery to brain cells? Does it mainly regulate removal of tissue metabolites such as lactate? Recent data has even challenged that there is coupling of oxygen metabolism and blood flow, which has led some researchers to the conclusion that coupling is an epiphenomenon which’ serves to enable functional neuroimaging’.


Cerebral Blood Flow Near Infrared Spectroscopy Cereb Blood Flow Blood Flow Response Neurovascular Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akeson, J., Bjorkman, S., Messeter, K., Rosen, I., and Helfer, M. Cerebral pharmacodynamics of anaesthetic and subanaesthetic doses of ketamine in the normoventilated pig. Acta Anaesthesiol Scand 37:211–218, 1993.CrossRefGoogle Scholar
  2. Chen, W., Novotny, E. J., Zhu, X.-H., Rothman, D. iL., and Shulman, R. G. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proc Natl Acad Sci 90:9896–9900, 1994.ADSCrossRefGoogle Scholar
  3. Cooper, R., Papakostopoulos, D., and Crow, H. J. Rapid changes of cortical oxygen associated with motor and cognitive function in man. In: Blood Flow and Metabolism in the Brain, edited by M. Harper, B. Jennett, D. Miller and J. Rowan. Edinburgh, London, New York, 1975, p. 14.8-14.9.Google Scholar
  4. Creutzfeld, O. D. Neurophysiological correlates of different functional states of the brain. In: Brain work. The coupling of function, metabolism, and blood flow in the brain, edited by D. H. Ingvar and N. A. Lassen. Copenhagen: Munksgaard, 1975, p. 21-47.Google Scholar
  5. Dora, E., Hines, K., Kunos, G., and McLaughlin, A. C. Significance of an opiate mechanism in the adjustment of cerebrocortical oxygen consumption and blood flow during hypercapnic stress. Brain Res 573:293–298, 1992.CrossRefGoogle Scholar
  6. Ernst, T. and Hennig, J. Observation of a fast response in functional MR. Magn Reson Med 32:146–149 (1994).CrossRefGoogle Scholar
  7. Fellows, K., Boutelle, M. G., and Fillenz, M. Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J Neurochem 60:1258–1263, 1993.CrossRefGoogle Scholar
  8. Fox, P. T., Raichle, M. E., Mintun, M. A., and Dence, C. Nonoxidative glucose consumption during focal physiologic neural acitvity. Science 241:462–464, 1988.ADSCrossRefGoogle Scholar
  9. Fox, P. T. and Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. 83:1140–1144, 1986.ADSCrossRefGoogle Scholar
  10. Frahm, J., Mehrboldt, K.-D., and Hänicke, W. Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 139-144, 1993.Google Scholar
  11. Frostig, R. D., Lieke, E. E., Tso, D. Y., and Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. 87:6082–6086, 1990.ADSCrossRefGoogle Scholar
  12. Furier, S. M., Jenkins, A. B., Storlien, L. H., and Kraegen, E. W. In vivo location of the rate-limiting step of hexose uptake in muscle and brain tissue of rats. Am J Physiol 261: E337–E347, 1991.Google Scholar
  13. Gotoh, O., Mohamed, A. A., McCulloch, J., Graham, D.I., Harper, A. M., and Teasdale, G. M. Nimodipine and the hemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J. Cereb. Blood. Flow Metab. 6:321–331, 1986.CrossRefGoogle Scholar
  14. Grinvald, A., Frostig, R. D., Siegel, R. iM., and Bartfeld, E. High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl A cad Sci USA 88:11559–11563, 1991.ADSCrossRefGoogle Scholar
  15. Hoshi, Y. and Tamura, M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett 150:5–8, 1993.CrossRefGoogle Scholar
  16. Iwamoto, J., Curran-Everett, D. C, Krasney, E., and Krasney, J. A. Cerebral metabolic and pressure-flow responses during sustained hypoxia in awake sheep. J Appl Physiol 71:1447–1453, 1991.Google Scholar
  17. Jones, M. D. Tissue oxygen transport: lessons from muscle and brain. Semin Hematol 31:102–111, 1994.Google Scholar
  18. Kato, T., Kamei, A., Takashima, S., and Ozaki, T. Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab 13:516–520, 1993.CrossRefGoogle Scholar
  19. Katsura, K., Falbergova, J., Gidö, G., and Siesjö, B. K. Functional, metabolic, and circulatory changes associated with seizure activity in the postischemic brain. J Neurochem 62:1511–1515, 1994.CrossRefGoogle Scholar
  20. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R., Hong-Ming, C., Brady, T. J., and Rosen, B. R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89:5675–5679, 1992.ADSCrossRefGoogle Scholar
  21. Leniger-Follert, E. Mechanisms of regulation of cortical microflow during bicuculline-induced seizures in anesthetized cats. J Cereb Blood Flow Metab 4:150–165, 1984.CrossRefGoogle Scholar
  22. Leniger-Follert, E. and Lübbers, D. W. Behavior of microflow and local pO2 of the brain cortex during and after direct electrical stimulation. A contribution to the problem of metabolic regulation of microcirculation in the brain. Pfluegers Arch 366:39–44, 1976.CrossRefGoogle Scholar
  23. Lund Madsen, P., Hasselbaich, S.G., Hagemann, L. P., Olsen, K. S., Bülow, J., Holm, S., Wildschiodtz, G., Paulson, O. B., and Lassen, N. A. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: Evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15:485–491, 1995.CrossRefGoogle Scholar
  24. Merboldt, K. D., Bruhn, H., Hänicke, W., Michaelis, T., and Frahm, J. Decrease of glucose in the human cerebral visual cortex during photic stimulation. Magn Reson Med 25:187–194, 1992.CrossRefGoogle Scholar
  25. Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., Hanstock, C., and Shulman, R. Lactate rise detected by 1H NMR in human visual cortex during physiologic activation. Proc Natl Acad Sci 88:5829–5831, 1991.ADSCrossRefGoogle Scholar
  26. Prichard, J. and Rosen, B. State-of-the-art-review. Functional study of the brain by NMR. Journal of Cerebral Blood Flow and Metabolism 14:365–372, 1994.CrossRefGoogle Scholar
  27. Robinson, P. and Rapoport, S. I. Glucose transport and metabolism in the brain. Am J Physiol 250:R127–R136, 1986.Google Scholar
  28. Sappey-Marinier, D., Calabrese, G., Fein, G., Hugg, J. W., Biggins, C, and Weiner, M. W. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 3IP magnetic resonance spectroscopy. Journal of Cerebral Blood Flow and Metabolism 12:584–592, 1992.CrossRefGoogle Scholar
  29. Silver, I. and Erecinska, M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during inreased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14:5068–5076, 1994.Google Scholar
  30. Turner, R., Jezzard, P., Wen, H., Kwong, K. K., Le Bihan, D., Zeffiro, T. and Balaban, R. S. Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxigenation contrast EPI. Magn Reson Med 277-279, 1993.Google Scholar
  31. Ueki, M., Linn, F., and Hossmann, K. A. Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab 8:486–494, 1988.CrossRefGoogle Scholar
  32. Van den Berg, C. On the relation between energy transformations in the brain and mental activities. In: Energetics and human information processing, edited by G. R. J. Hockey, M. G. Gaillard and H. Coles. Boston: Nijhoff, 1986, p. 131-135.Google Scholar
  33. Villringer, A., Planck, J., Hock, C, Schleinkofer, L., and Dirnagl, U. Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–194, 1993a.CrossRefGoogle Scholar
  34. Villringer, A., Planck, J., Hock, C, Schuh-Hofer, S., Schleinkofer, L., and Dirnagl, U. Influence of functional cerebral activation on the concentration of oxygenated and deoxygenated hemoglobin in human adults. J Cereb Blood Flow Metab 13 Suppl.1: S840, 1993b.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ulrich Dirnagl
    • 1
  1. 1.Department of Neurology, CharitéBerlinGermany

Personalised recommendations