Skip to main content

Towards Brain Mapping Combining Near-Infrared Spectroscopy and High Resolution 3D MRI

  • Chapter
Optical Imaging of Brain Function and Metabolism 2

Abstract

Neuronal activation is coupled to localised changes in regional cerebral blood flow, blood oxygenation and metabolism (Leninger-Follert et al. 1979, Frostig et al. 1990). On this basis it is possible to detect and localise activated brain areas by the use of functional imaging methods like PET and fMRI (Phelps et al. 1985, Fox et al. 1986, Belliveau et al. 1991). The high spatial resolution of these imaging methods allows to characterise and localise hemodynamic and metabolic changes of activated brain areas on an anatomical basis. Near infrared spectroscopy noninvasively detects changes in the concentration of oxy-Hb, deoxy-Hb and Cyt-O2 by measuring changes in absorption at specific wavelength of light in the near infrared region. The technique in the first instance was used to detect global changes in cerebral hemodynamics (Jöbsis 1977, Elwell 1994) and was recently introduced to assess hemodynamic response induced by functional brain activation (Hoshi et al. 1993, Villringer et al. 1993, Obrig et al. 1995, Kato et al. 1993, Meek et al. 1995), The high temporal resolution and the ability to assess several oxygenation parameters simultaneously provides information about temporal dynamics of oxygenation changes in response to functional stimulation. Reasons for using this technique to investigate functional brain activation lie in some advantages compared to traditionally used functional imaging methods. Near infrared spectroscopy is completely non-invasive low expensive and can be used with high flexibility. NIRS allows repeated measures and administration of exogenous tracers is not required. The technique is therefore suited for assessment of brain function in clinical settings as a bedside technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arridge SR, Schweiger M, Hiraoka M, Delpy DT. A finite element approach for modelling photon transport in tissue. Med. Phys. 20:299–309, 1993.

    Article  Google Scholar 

  • Belliveau JW, Kennedy DN, McKinstry DN, Buchbinder RC, Weisskoff RM, Cohen MS, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254:716–719, 1991.

    Article  ADS  Google Scholar 

  • Benaron DA, Stevenson DK. Optical time-of-flight and absorbance imaging of biologic media. Science 259:1463–1466, 1993.

    Article  ADS  Google Scholar 

  • Bonner RF, Nossal R, Havlin S, Weiss GH. Model for photon migration in turbid biological media. J. Opt. Soc. Am. 4:423–432, 1987.

    Article  ADS  Google Scholar 

  • Chance B. Optical method, ann. Rev. Biophys. chem. 20:1–28, 1991.

    Article  Google Scholar 

  • Chance B. NMR and time-resolved optical studies of brain imaging. Adv. Exp. Med. 333:1–9, 1993.

    Article  Google Scholar 

  • Cope M, Delpy DT. A system for the long-term measurement of cerebral blood and tissue oxygenation in newborn infants by near infrared transillumination. Med, Biol. Engng. Comput. 26:289–294, 1988.

    Article  Google Scholar 

  • Delpy DT, Cope M, van der Zee P, Arridge SR, Wray S, Wyatt JS. Estimation of optical pathlength through tissue from direct time of flight measurements. Phys. Med. Biol. 33:1433–1442, 1988.

    Article  Google Scholar 

  • Duncan A, Meek JH, Tyszczuk L, Clemente M, Elwell CE, Cope M, Delpy DT. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys. Med. Biol. 40:1–10, 1995.

    Article  Google Scholar 

  • Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EOR. Quantification of adult cerebral haemodynamics by near-infrared spectroscopy. J. Appl. Physiol. 77:2753–2760, 1994.

    Google Scholar 

  • Elwell CE, Cope M, Edwards AD, Wyatt JS, Reynolds EOR, Delpy DT. Measurements of cerebral blood flow in adult humans using near-infrared spectroscopy — methodology and possible errors. Adv.Exp.Med. Biol. 317:235–245, 1992.

    Article  Google Scholar 

  • Firbank M, Hiraoka M, Essenpreis M, Delpy DT. Measurements of the optical properties of the skull in the wavelength range of 650–950, Phys.Med.Biol. 38:503–510, 1993.

    Article  Google Scholar 

  • Fox PT, Mintun MA, Raichle ME, Miezin FM, Allmann JM, Van Essen DC. Mapping human visual cortex with positron emission tomography. Nature 323:806–809, 1986.

    Article  ADS  Google Scholar 

  • Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. U.S.A. 87:6082–6086, 1990.

    Article  ADS  Google Scholar 

  • Gratton G, Maier JS, Fabiani M, Mantulin WM, Gratton E. Feasibility of intracranial near-infrared optical scanning. Psychophysiol. 31:211–215, 1994.

    Article  Google Scholar 

  • Hirokara M, Firbank M, Essenpreis M, Cope M, Arridge SR, van der Zee P, Delpy DT. A monte carlo investigation of optical pathlength in inhomogenous tissue and ist application to near-infrared spectroscopy. Phys. Med. Biol. 38:1859–1876, 1993.

    Article  Google Scholar 

  • Hoshi Y, Tamura M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci. Lett. 150:5–8, 1993.

    Article  Google Scholar 

  • Jöbsis FF. Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267, 1977.

    Article  ADS  Google Scholar 

  • Kato T, Kamei A, Takashima S, Ozaki T. Human visual cortical function during photic stimulation monitored by means of near-infrared spectroscopy. JCBFM 13:516–520, 1993.

    Google Scholar 

  • Leninger-Follert E, Hossmann KA. Simultaneous measurement of microflow and evoced potentials in the somatomotor-cortex of the cat during specific sensory activation. Pflügers Arch. 380:85–95, 1979.

    Article  Google Scholar 

  • McCormick PW, Melville S, Lewis G, Dujovny M, Ausman JI. Intracerebral penetration of light. J Neurosurg 76:315–318, 1992.

    Article  Google Scholar 

  • Meek JH, Elwell CE, Khan MJ, Romaya J, Wyatt JS, Delpy DT, Zeki S. Regional changes in cerebral haemodynamics as a result of visual stimulus measured by near infrared spectroscopy. Proc. R. Soc. Lond. B. 261:351–356, 1995.

    Article  ADS  Google Scholar 

  • Nossal R, Bonner RF, Weiss GH. The influence of path length on remote optical sensing of properties of biological tissue. Appl. Optics 28:2238–2244, 1989.

    Article  ADS  Google Scholar 

  • Obrig H, Hirth C, Junge-Hülsing JG, Doge C, Wolf T, Dirnagl U, Villringer A. Cerebral oxygenation changes in response to motor stimulation. J Appl Phys. submitted.

    Google Scholar 

  • Obrig H, Wolf T, Doge C, Junge-Hülsing J, Dirnagl U, Villringer A. Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured` by near-infrared spectroscopy. Adv Exp Med Biol. 1997 in press.

    Google Scholar 

  • Okada E, Firbank M, Delpy DT. The effect of overlying tissue on the spatial sensitivity profile of near infrared spectroscopy. Phys. Med. Biol. 40:1995, in press.

    Google Scholar 

  • Phelps ME, Mazziotta JC. Positron emission tomography: Human Brain function and biochemistry. Science 228:799–899, 1985.

    Article  ADS  Google Scholar 

  • Sevick EM, Burch CL, Chance B. Near infrared optical imaging of tissue phantoms with measurement in the change of optical path length. Adv. Exp. Med. Biol. 815-823, 1994.

    Google Scholar 

  • Sevick EM, Chance B, Leigh J, Nioka S, Maris M. Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation. Analytical Biochemistry 195:330–351, 1991.

    Article  Google Scholar 

  • Shinohara Y, Takagi S, Shinohara N, Kawaguchi F, Itoh Y, Yamashita Y, Maki A. Opitcal CT imaging of hemoglobin oxygena-saturation using dual-wavelength time gate technique. Adv. Exp. Med. 333:43–47, 1993.

    Article  Google Scholar 

  • Smith DS, Levy W, Maris M, Chance B. Reperfusion hypoxia in brain after circulatory arrest in humans. Anesthesiology 73:12–19, 1990.

    Article  Google Scholar 

  • Steinmetz H, Fürst G, Meyer BU. Craniocerebral topography within the international 10–20 system. Electroenc. Clin. Neurophysiol. 72:.

    Google Scholar 

  • van der Zee P, Arridge SR, Cope M, Delpy DT. The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain. Adv. Exp. Med. Biol. 277:79–84, 1992.

    Article  Google Scholar 

  • van der Zee P, Cope M, Arridge SR, Essenpreis M, Potter LA, Edwards AD, et al. Experimentally measured optical pathlengths for adult head, calf and forarm and the head of the newborn infant as a function of interoptode spacing. Adv. Exp. Med. Biol. 316:143–153, 1992.

    Article  Google Scholar 

  • Villringer A, Planck J, Stodiek S, Botzel K, Schleinkofer L, Dirnagl U. Noninvasive assessment of cerebral haemodynamics and tissue oxygenation during activation of brain cell function in human adults using NIRS. Neurosci. Lett. 154:1–2, 1993.

    Article  Google Scholar 

  • Wray S, Cope M, Delpy DT, Wyatt Js, Reybolds EO. Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation. Biochem Biophys. Acta. 993:184–192, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hirth, C. et al. (1997). Towards Brain Mapping Combining Near-Infrared Spectroscopy and High Resolution 3D MRI. In: Villringer, A., Dirnagl, U. (eds) Optical Imaging of Brain Function and Metabolism 2. Advances in Experimental Medicine and Biology, vol 413. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0056-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0056-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0058-6

  • Online ISBN: 978-1-4899-0056-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics