Skip to main content

Rat Carrier Erythrocytes Circulate and Arrive to Organs

  • Chapter
Erythrocytes as Drug Carriers in Medicine

Abstract

Different delivery systems are currently used in therapy. They have the advantage of protecting the active substance from rapid clearance and avoiding toxic side effects. Among the many carrier systems proposed12, RBCs have many desirable properties: they are naturally biodegradable and may stay in circulation over prolonged periods of time11,25; RBCs are easily obtainable and large amounts of material can be entrapped in a small volume of cells by hypotonic dialysis; autologous cells elicit little or no immune response7,16,20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.J. Alvarez, A. Herráez, J.C. Murciano, J. A. Jordán, J.C. Díez, and M.C. Tejedor, In vivo survival and organ uptake of loaded carrier rat erythrocytes. J. Biochem. 120:286 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. F.J. Alvarez, A. Herráez, and M.C. Tejedor, Fluorescence analysis of carrier rat and human erythrocytes loaded with FITC-dextran. Cytometry 24:181 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. F.J. Alvarez, A. Herráez, M.C. Tejedor, and J.C. Díez, Behaviour of isolated rat and human red blood cells upon hypotonic-dialysis encapsulation of carbonic anhydrase and dextran. Biotechnol. Appl. Biochem. 23:173(1996).

    PubMed  CAS  Google Scholar 

  4. U. Benatti, E. Zocchi, M. Tonetti, L. Guida, C. Polvani, and A. De Flora, Enhanced antitumor activity of adriamycin by encapsulation in mouse erythrocytes targeted to liver and lungs. Pharmacol. Res. 21:27 (1989).

    Article  PubMed  Google Scholar 

  5. L. Chiarantini, A. Antonelli, G. Serafini, A. Fraternale, and M. Magnani, In vivo survival and in vitro phagocytosis of engineered erythrocytes. Adv. Biosci. 92:83 (1994).

    CAS  Google Scholar 

  6. L. Chiarantini, J. Johnson, and J.R. DeLoach, Optimized recirculation survival of mouse carrier erythrocytes. Blood Cells 17:607 (1991).

    PubMed  CAS  Google Scholar 

  7. A. De Flora, E. Zocchi, L. Guida, C. Polvani, and U. Benatti, Conversion of encapsulated 5-fluoro-2′-deoxyuridine 5′-monophosphate to the antineoplastic drug 5-fluoro-2′-deoxyuridine in human erythrocytes. Proc. Nat. Acad. Sci. USA 85:3145 (1988).

    Article  PubMed  Google Scholar 

  8. J.R. DeLoach, K. Andrews, W. Satterfield, and M. Keeling, Intraperitoneal administration of carrier erythocytes in dogs: an improved method for delivery of L-asparaginase. Biotechnol. Appl. Biochem. 12:331 (1990).

    PubMed  CAS  Google Scholar 

  9. J.R. DeLoach, K. Andrews, and C.L. Sheffield, Encapsulation of interleukin-2 in murine erythrocytes and subsequent deposition in mice receiving a subcutaneous injection. Biotechnol. Appl. Biochem. 10:183 (1988).

    PubMed  CAS  Google Scholar 

  10. J.R. DeLoach and R.E. Droleskey, Survival of murine carrier erythrocytes injected via peritoneum. Comp. Biochem. Physiol. A 84:447 (1986).

    Article  CAS  Google Scholar 

  11. J.R. DeLoach and R.E. Droleskey, Preparation of ovine carrier erythrocytes: their action and survival. Comp. Biochem. Physiol. A 84:441 (1986).

    Article  CAS  Google Scholar 

  12. P.K. Gupta, Drug targeting in cancer chemotherapy: a clinical perspective. J. Pharm. Sci. 79:949 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. J.A. Jordán, R.B. Moyes, R. Droleskey, J.C. Diez, J. Luque, and J.R. DeLoach, In vitro and in vivo evaluation of BS3 and DTSSP crosslinked erythrocytes. Adv. Biosci. 92:17 (1994).

    Google Scholar 

  14. G. Lee, T.M. Delohery, Z. Ronai, P.W. Brandt-Rauf, M.R. Pincus, R.B. Murphy, and I.B. Weinstein, A comparison of techniques for introducing macromolecules into living cells. Cytometry 14:265 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. J. Luque, M.I. Garín, S. Sanz, P. Ropero, and M. Pinilla, Properties of hypotonized, crosslinked and crosslinked-permeabilized rat erythrocytes as potential carrier systems. Adv. Exp. Med. Biol. 326:81 (1992).

    PubMed  CAS  Google Scholar 

  16. M. Magnani, G. Serafini, and V. Stocchi, Hexokinase type I multiplicity in human erythrocytes. Biochem. J. 254:617(1988).

    PubMed  CAS  Google Scholar 

  17. M. Morrison, A.W. Michaels, D.R. Phillips, and S. Choi, Life span of erythrocyte membrane protein. Nature 248:763 (1974).

    Article  PubMed  CAS  Google Scholar 

  18. M.T. Pérez, F.J. Alvarez, A.I. García-Pérez, L. Lucas, M.C. Tejedor, and P. Sancho, Heterogeneity of hypo-tonically loaded rat erythrocyte populations as detected by counter-current distribution in aqueus polymer two-phase systems. J. Chromatogr. B 677:45 (1996).

    Google Scholar 

  19. E. Pitt, C.M. Johnson, D.A. Lewis, D.A. Jenner, and R.E. Offord, Encapsulation of drugs in intact erythrocytes and intravenous delivery system. Biochem. Pharmacol. 32:3359 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. L. Rossi, M. Bianchi, A. Fraternale, and M. Magnani, Normalization of hyperglycemia in diabetic mice by enzyme-loaded erythrocytes. Adv. Exp. Med. Biol. 326:183 (1992).

    PubMed  CAS  Google Scholar 

  21. M.C. Tejedor, C.E. Alvarez, F.J. Alvarez, A. Herráez, and J. Luque, Comparative encapsulation at different hypotonie pressures in human and rat erythrocytes. Adv. Biosci. 92:73 (1994).

    CAS  Google Scholar 

  22. M. Tonetti, C. Polvani, E. Zocchi, L. Guida, U. Benatti, P. Biassoni, F. Romei, A. Guglielmi, C. Aschete, A. Sobrero, and A. De Flora, Liver targeting of autologous erythrocytes loaded with doxorubicin. Eur. J. Cancer 27:947 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. E. Zocchi, L. Guida, U. Benatti, M. Canepa, L. Borgiani, T. Zanin, and A. De Flora, Hepatic or splenic targeting of carrier erythrocytes: a murine model. Biotechnol. Appl. Biochem. 9:423 (1987).

    PubMed  CAS  Google Scholar 

  24. E. Zocchi, M Tonetti, C. Polvani, L. Guida, U. Benatti, and A. De Flora, In vivo liver and lung targeting of adriamycin encapsulated in glutaraldehyde-treated murine erythrocytes. Biotechnol. Appl. Biochem. 10:555(1988).

    PubMed  CAS  Google Scholar 

  25. L. Zolla, G. Lupidi, M. Marcheggiani, G. Falcioni, and M. Brunori, Encapsulation of proteins into human erythrocytes: a kinetic investigation. Biochim. Biophys. Acta 1024:5 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alvarez, F.J. et al. (1997). Rat Carrier Erythrocytes Circulate and Arrive to Organs. In: Sprandel, U., Way, J.L. (eds) Erythrocytes as Drug Carriers in Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0044-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0044-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0046-3

  • Online ISBN: 978-1-4899-0044-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics