Advertisement

Input/Output Properties

  • O. Hijab
Chapter
Part of the Applications of Mathematics book series (SMAP, volume 20)

Abstract

Consider an idealization of a point mass in the presence of an inverse square force field −k/r 2.

Keywords

Transfer Function Entire Function Minimal Polynomial State Trajectory Range Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. [1.1]
    R. W. Brockett, Finite Dimensional Linear Systems, Wiley, New York, 1970.zbMATHGoogle Scholar
  2. [1.2]
    E. G. Gilbert, “Controllability and Observability in Multivariable Control Systems,” SIAM J. Control Optim., 1 (1963), 128–151.zbMATHGoogle Scholar
  3. [1.3]
    M. Hazewinkel, “Moduli and Canonical Forms for Linear Dynamical Systems,” appears in [1.8].Google Scholar
  4. [1.4]
    M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974.zbMATHGoogle Scholar
  5. [1.5]
    R. E. Kaiman, “Canonical Structure of Linear Dynamical Systems,” Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 596–600.MathSciNetCrossRefGoogle Scholar
  6. [1.6]
    R. E. Kaiman, “Mathematical Description of Linear Dynamical Systems,” SIAM J. Control Optim., 1 (1963), 152–192.Google Scholar
  7. [1.7]
    R. E. Kaiman, Y. C. Ho, and K. S. Narendra, “Controllability of Linear Dynamical Systems,” in Contributions to the Theory of Differential Equations, Vol. I. Interscience, New York, 1963.Google Scholar
  8. [1.8]
    C. Martin and R. Hermann (eds.), Proceedings of the 1976 Ames Research Center (NASA) Conference on Geometric Control Theory, Mathematical Science Press, Brookline, MA, 1977.Google Scholar
  9. [1.9]
    L. S. Pontrjagin, “Optimal Regulation Processes,” Uspekhi Mat. Nauk. (N.S.), 14 (1959), 3–20. (AMS Translations (Series 2), 18 (1961), 321-340.).MathSciNetGoogle Scholar
  10. [1.10]
    W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1970.Google Scholar
  11. [1.11]
    E. M. Stein and G. Weiss, Fourier Analysis in Euclidean Space, Princeton University Press, Princeton, NJ, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • O. Hijab
    • 1
  1. 1.Mathematics DepartmentTemple UniversityPhiladelphiaUSA

Personalised recommendations