Rolling Out 5G pp 111-130 | Cite as

The Disruptor: The Millimeter Wave Spectrum

  • Biljana Badic
  • Christian Drewes
  • Ingolf Karls
  • Markus Mueck
Chapter

Abstract

The fast development of smart and connected products, including consumer electronics, means that for the best user experience, wireless networks need to operate in frequency bands both below and above 6 GHz. The millimeter wave spectrum, as noted in previous chapters, is mainly driven by the ever-increasing number of extreme broadband applications and services. First there are many opportunities, since spectrum allocations have been and will be offered for millimeter wavelengths (10 mm to 1 mm) and frequencies (30 to 300 GHz) for wireless mobile communication. Second, important development tools have now been prepared for the millimeter wave spectrum, including channel models, link level and system level simulation (LLS and SLS), antenna and baseband, and radio front-end design. The third source of this growth is that applications are now being planned or developed for these frequencies that go far beyond those already in the market, like automotive radar, wireless broadband fixed access, and satellite communications. Finally there is the unbelievable development and progress of semiconductor technology that will make the implementation of millimeter wave communication feasible for 5G.

Keywords

Channel Model User Equipment Wave Spectrum Multiple Input Multiple Output Federal Communication Commission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1.  1.
    3GPP. (2012-09). Technical Specification Group Radio Access Network; Spatial channel model for Multiple Input Multiple Output (MIMO) simulations. 3GPP TR 25.996 V11.0.0.Google Scholar
  2.  2.
    3GPP. (2015). 3GPP timeline 5G. Retrieved from 3GPP: http://www.3gpp.org/ftp/tsg_sa/tsg_sa/TSGS_67/Docs/SP-150149.zip
  3.  3.
    3GPP. (2015, October 19). RAN 5G Workshop. Retrieved from 3GPP: http://www.3gpp.org/news-events/3gpp-news/1734-ran_5g
  4.  4.
    3GPP TR 25.996. (2015). Spatial channel model for Multiple Input Multiple Output (MIMO) simulations. 3GPP.Google Scholar
  5.  5.
    3GPP TR 36.873. (2015). Study on 3D channel model for LTE. 3GPP.Google Scholar
  6.  6.
    CEA Spectrum report—the White House. (2012). The economic benefits of new spectrum for wireless broadband. Washington D.C.: Executive office of the president council of economic advisers.Google Scholar
  7.  7.
    Cisco. (2015). Cisco Visual Networking Index: Forecast and Methodology, 2014. Cisco.Google Scholar
  8.  8.
    COST. (2014). COST. Retrieved from COST: http://www.cost2100.org/
  9.  9.
    Ericsson. (2015). Ericsson Mobility Report. Stockholm: Ericsson.Google Scholar
  10. 10.
    ETSI. (2015). Analysis of antennas for millimeter wave transmission. ETSI ISG mWT.Google Scholar
  11. 11.
    ETSI ISG mWT. (2015). Applications and use cases of millimeter wave transmission. ETSI.Google Scholar
  12. 12.
    FCC. (2015). Notice of proposed rule making. FCC-15-138A1.Google Scholar
  13. 13.
    Fraunhofer HHI. (2014). Channel modeling and characterization. MiWEBA.Google Scholar
  14. 14.
    IEEE 11-15/0625r3. (2015). IEEE 802.11 TGay use cases. IEEE.Google Scholar
  15. 15.
    IEEE. (2012). 802.11ad-Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. IEEE Standard for Information technology.Google Scholar
  16. 16.
    Intel. (2015). Intel wireless docking. Retrieved from Intel: http://www.intel.com/content/www/us/en/wireless-products/wireless-docking.html
  17. 17.
    ITU-R. (2009). Guidelines for evaluation of radio interface technologies for IMT-Advanced, International telecommunication union (ITU), Geneva, Switzerland, Technical Report. ITU-R M.2135-1.Google Scholar
  18. 18.
    ITU-R. (2015). IMT traffic estimates for the years 2020 to 2030. ITU-R M.2370-0.Google Scholar
  19. 19.
    Jaeckel, S., Raschkowski, L., Börner, K., & Thiele, L. (2014). “QuaDRiGa: A 3-D Multicell Channel Model with Time Evolution for Enabling Virtual Field Trials”. IEEE Trans. Antennas Propag.Google Scholar
  20. 20.
    Maltsev, A., Erceg, V., Perahia, E., Hansen, C., Maslennikov, R., Lomayev, A., Harada, H. (2010). Channel Models for 60 GHz WLAN Systems. IEEE 802.11ad 09/0334r8.Google Scholar
  21. 21.
    METIS2020. (2015). METIS Channel Model. METIS2020.Google Scholar
  22. 22.
    MiWEBA. (2013). Retrieved from http://www.miweba.eu/#Project
  23. 23.
    MiWEBA. (2015). D4.5 Overall system performance evaluation results. MiWEBA.Google Scholar
  24. 24.
    Samsung, Nokia Networks. (2015, Sep). Contributions. Retrieved from 3GPP: https://portal.3gpp.org/ngppapp/TdocList.aspx?meetingId=31198
  25. 25.
    T. S. Rappaport, e. a. (2015). Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Transactions on Communications, 3029-3056.Google Scholar
  26. 26.
    WINNER. (2010). WINNER II Channel Models 2007; D5.3: WINNER+ Final Channel Models 2010. IST-4-027756 D1.1.2 V1.2.Google Scholar
  27. 27.
    Y. Yu, P. G. (2011). Integrated 60GHz RF Beamforming in CMOS. Heidelberg London New York: Springer.Google Scholar
  28. 28.
    Maltsev A., Pudeyev A., Karls I., Bolotin I., Morozov G., Weiler R.J., Peter M., Keusgen W., “Quasi-deterministic Approach to mmWave Channel Modeling in a Non-stationary Environment”, IEEE GLOBECOM 2014, Austin, Texas, USA, pp966-971.Google Scholar
  29. 29.
    Maltsev A., Sadri A., Pudeyev A., Bolotin I., Davydov A., Morozov G., Weiler R., “Partially Adaptive Arrays application for MU-MIMO mode in a MmWave Small Cells”, IEEE PIMRC2015, pp315-319.Google Scholar
  30. 30.
    Maltsev A., Sadri A., Pudeyev A., Bolotin I., Davydov A., Morozov G., “Performance evaluation of the MmWave Small Cells communication system in MU-MIMO mode”, EuCNC’2015.Google Scholar
  31. 31.
    Maltsev A., Sadri A., Pudeyev A., Bolotin I., “Highly-directional steerable antennas”, IEEE Vehicular Technology Magazine, March 2016.Google Scholar

Copyright information

© Intel Corp. 2016

Authors and Affiliations

  • Biljana Badic
    • 1
  • Christian Drewes
    • 1
  • Ingolf Karls
    • 1
  • Markus Mueck
    • 1
  1. 1.Intel Deutschland GmbHMUNICHGermany

Personalised recommendations