Brain Imaging Techniques in Alzheimer’s Disease (CT, NMR, SPECT and PET)

  • J. A. O. Besson
  • J. R. Crawford
  • D. M. Parker
  • P. V. Best
  • H. G. Gemmell
  • P. F. Sharp
  • F. W. Smith


The brain imaging techniques described in this chapter allow direct examination of brain structure and function in health and disease states in vivo. The dementias are for the most part age-related conditions and thus the importance of ageing effects on brain structure and function must be taken into account in the interpretation of changes in patients with dementing conditions. In addition to this, the ultimate classification of dementia must rely on postmortem corroboration of macroscopic and microscopic changes in order to be definitive, and ultimately pathological criteria should be used to confirm the clinical and imaging findings.


White Matter Single Photon Emission Compute Tomography Cerebral Blood Flow White Matter Lesion Regional Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barron, S.A., Jacobs, L. and Kinkel, W.R. (1976). Changes in size of normal lateral ventricles during ageing determined by computerised tomography. Neurology, 26, 1011–1013.PubMedCrossRefGoogle Scholar
  2. Besson, J.A.O. (1987). Electrophysiological and brain imaging techniques. in: B. Pitt (ed.). Dementia. Edinburgh: Churchill Livingston.Google Scholar
  3. Besson, J.A.O., Ebmeier, K.P., Best, P.V. and Smith, F.W. (1988). Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer’s Disease? Journal of Neurology, Neurosurgery and Psychiatry, 51, 318–19.CrossRefGoogle Scholar
  4. Besson, J.A.O., Greentree, S.G., Foster, M.A. and Rimmington, J.E. (1989). Regional variation in rat brain proton relaxation times and water content. Magnetic Resonance Imaging, in press.Google Scholar
  5. Bondareff, W., Baldry, R. and Levy, R. (1981). Quantitative computed tomography in senile dementia. Archives of General Psychiatry, 38, 1365–1368.PubMedCrossRefGoogle Scholar
  6. Brinkman, S.D. and Langen, J.W. (1984). Changes in ventricular size with repeated CAT scans in suspected Alzheimer’s Disease. American Journal of Psychiatry, 141, 81–83.PubMedGoogle Scholar
  7. Brinkman, S.D., Sarwar, M., Levin, H.S. and Morris, H.H. (1981). Qualitative indices of computed tomography in dementia and normal aging. Radiology, 138, 89–92.PubMedGoogle Scholar
  8. Brun, A. and Englund, E. (1981). Regional pattern of degeneration in Alzheimer’s Disease: removal loss and histopathological grading. Histopathology, 5, 549–564.PubMedCrossRefGoogle Scholar
  9. Brun, A. and Englund, E. (1986). A white matter disorder in dementia of Alzheimer type: a pathoanatomical study. Annals of Neurology, 19, 253–262.PubMedCrossRefGoogle Scholar
  10. Brun, A. and Englund, E. (1987). Brain changes in dementia of Alzheimer’s type relevant to new imaging diagnostic methods. Progress in Neuropsychopharmacology and Biological Psychiatry, 10, 297–308.CrossRefGoogle Scholar
  11. Bustany, P. and Cumar, D. (1985). Protein synthesis evaluation in brain and other organs in humans by PET. in: I. Reivich and J. Alan (eds.). Positron Emission Tomography. New York: A.R. Liss.Google Scholar
  12. Chase, T.N., Foster, N.L., Fedio, P., Brooks, R., Mansi, L. and Di Chiro, G. (1984). Regional cortical dysfunction in Alzheimer’s Disease as determined by positron emission tomography. Annals of Neurology, 15, 170–174.CrossRefGoogle Scholar
  13. Damadian, R. (1974). Apparatus and method for detecting cancer in tissue. U.S. Patent 3, 789–823. 1972.Google Scholar
  14. Davis, P.M.J. and Wright, E.A. (1977). A new method of measuring cranial cavity volume and its application to the assessment of atrophy at autopsy. Neuropathology and Applied Neurobiology, 3, 341–358.CrossRefGoogle Scholar
  15. Dekaban, A.S. and Sadowsky, D. (1978). Changes in brain weights during the span of human life. relation of brain weights to body heights and body weights. Annals of Neurology, 4, 346–356.CrossRefGoogle Scholar
  16. Ebmeier, K.P., Besson, J.A.O., Crawford, J.R., Palin, A.N., Gemmell, H.G., Sharp, P.F., Cherryman, G.R. and Smith, F.W. (1987). Nuclear magnetic resonance imaging and single photon emission tomography with radio iodine labelled compounds in the diagnosis of dementia. Acta Psychiatrica Scandinavica, 75, 549–556.PubMedCrossRefGoogle Scholar
  17. Erbinjuntti, T., Ketonen, L., Sulkana, R., Sipponen, J., Vuoriallo, M., Iivanainen, M. (1987). Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer’s Disease? Journal of Neurology, Neurosurgery and Psychiatry, 50, 37–42.CrossRefGoogle Scholar
  18. Foster, N.L., Chase, T.N., Mansi, L., Brooks, R., Fedio, P., Patronas, N.J. and Di Chiro, G. (1984). Cortical abnormalities in Alzheimer’s Disease. Annals of Neurology, 16, 649–654.PubMedCrossRefGoogle Scholar
  19. Fox, P.T. and Raichle, M.E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences, U.S.A., 84, 1140–1144.CrossRefGoogle Scholar
  20. Frackowiak, R.S.J., Pozzilli, C., Legg, N.J., Du Boulay, G.H., Marshall, J., Lenzi, G.L. and Jones, T. (1981). Regional cerebral oxygen supply and utilisation in dementia. Brain, 104, 753–778.PubMedCrossRefGoogle Scholar
  21. Frackowiak, R.S.J., Wise, R.J.S., Gibb, J.M. and Jones, T. (1984). Positron emission tomographic studies in ageing and cerebrovascular disease at Hammersmith Hospital, Annals of Neurology, 15, 112–118.CrossRefGoogle Scholar
  22. Gado, M., Danziger, W.L., Chi, D., Hughes, C.P. and Coben, L.A. (1983). Brain parenchymal density measurements by CT in demented subjects and normal controls. Radiology, 147, 703–710.PubMedGoogle Scholar
  23. Gemmell, H.G., Sharp, P.F., Besson, J.A.O., Crawford, J.R., Ebmeier, K.P., Davidson, J. and Smith, F.W. (1987). Differential diagnosis in dementia using 99mTc in HMPAO: a new cerebral blood flow agent. Journal of Computed Assisted Tomography, 11, 398–402.CrossRefGoogle Scholar
  24. Gemmell, H.G., Sharp, P.F., Evans, N.T.S., Besson, J.A.O. and Lyall, D. (1984). Single photon emission tomography with 123lodoamphetamine in Alzheimer’s Disease and multi infarct dementia. Lancet, 11, 1348.CrossRefGoogle Scholar
  25. Gorell, J.M., Brown, G., Bueri, J.A., Levine, S.R., Gordowska, J., Bruce, R., Kensora, T., Welch, K.M.A. and Smith, M.B. (1987). Cerebral 31P NMR Spectroscopy in Alzheimer’s and Parkinson’s Dementia. Proceedings of the Society for Magnetic Resonance in Medicine, 999.Google Scholar
  26. Hahn, E.L. (1950). Spin Echoes. Physics Review, 80, 580–594.CrossRefGoogle Scholar
  27. Holman, B.L., Gibson, R.E., Hill, T.C., Eckelman, W.C., Albert, M. and Reka, M.C. (1985). Muscarinic acetylcholine receptors in Alzheimer’s Disease. In vivo imaging with 123I labelled 3 quinuclidinyl 4 iodo benzlate and emission tomography. Journal of the American Medical Association, 254, 3063–3066.Google Scholar
  28. Hachinski, V.C., Linnette, D., Zilhla, E., Du Boulay, G.H., McAllister, V.L., Marshall, J., Ross Russell, R.W. and Symon, L. (1975). Cerebral blood flow in dementia. Archives of Neurology, 32, 632–637.PubMedCrossRefGoogle Scholar
  29. Hubbard, B.M. and Anderson, J.M. (1981). A quantitative study of cerebral atrophy in old age and senile dementia. Journal of the Neurological Sciences, 50, 135–145.PubMedCrossRefGoogle Scholar
  30. Buckman, M.S., Fox, J. and Topel, J. (1975). The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology, 116, 85–92.Google Scholar
  31. Kuhl, D.E., Metter, E.J., Benson, F., Wesson-Ashford, J., Riege, W.H., Fujikawa, D.G. and Markham, J. (1985). Similarities of cerebral glucose metabolism in Alzheimer’s Disease and Parkinsonian Dementia. Journal of Cerebral Blood Flow and Metabolism, 5, 169–170.Google Scholar
  32. Largen, J.W., Shaw, T., Weinman, M. (1981). Order effects and responsiveness of regional cerebral blood flow in early putative Alzheimer’s Disease. Journal of Cerebral Blood Flow and Metabolism 1, 483–484.Google Scholar
  33. Lauterbur, P.C. (1973). Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature, 242, 190–196.CrossRefGoogle Scholar
  34. Mallard, J.R., Hutchison, J.M.S., Edelstein, W.A., Ling, C.R., Foster, M.A. and Johnson, G. (1980). In vivo NMR imaging in medicine: the Aberdeen approach both physical and biological. Philosophical Transactions of the Royal Society of London, 289B, 519–533.PubMedCrossRefGoogle Scholar
  35. Mann, D.M.A. (1982). Nerve cell protein metabolism and degenerative disease. Neuropathology and Applied Neurobiology, 8, 161–176.PubMedCrossRefGoogle Scholar
  36. Mathur-de Vre, R. (1979). NMR studies of water in biological physics, Progress in Biophysics and Molecular Biology, 35, 103–134.CrossRefGoogle Scholar
  37. Meyer, J.S. (1983). Cerebral blood flow: use in differential diagnosis of Alzheimer’s disease. in: B. Reisberg (ed.). Alzheimner’s Disease. New York: Free Press.Google Scholar
  38. Miller, A.K.H., Alston, R.L. and Corsellis, A.N. (1980). Variation with age in the volumes of grey and white matter in the cerebral hemispheres in man: measurements with an image analyser. Neuropathology and Applied Neurobiology, 6, 119–132.PubMedCrossRefGoogle Scholar
  39. Naeser, M.A., Gebhardt, C. and Levine, H.H. (1980). Decreased computerised tomography numbers in patients with senile dementia. Archives of Neurology, 37, 401–409.PubMedCrossRefGoogle Scholar
  40. Obrist, W.D., Thompson, H.K., King, C.H. and Wang, H.S. (1967). Determination of regional cerebral blood flow by inhalation of 133Xenon. Circulation Research, 20, 124–135.PubMedCrossRefGoogle Scholar
  41. Pettegrew, J.W., Kopp, J.J., Minshew, N.J., Glonek, T., Felchsik, J.M., Tow, S.P. and Cohen, M.M. (1987). 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. Journal of Neuropathology and Experimental Neurology, 46, 419–430.Google Scholar
  42. Sharp, P.F., Gemmel], H.G., Cherryman, G., Besson, J.A.O., Crawford, J.R. and Smith, F.W. (1986). The application of 1231 labelled (IMP) isopropylamphetamine imaging to the study of dementia. Journal of Nuclear Medicine, 27, 761–768.PubMedGoogle Scholar
  43. Takeda, S. and Matsuzawa, T. (1984). Brain atrophy during ageing: a quantitative study using computed tomography. Journal of the American Geriatric Society, 32, 520–524.Google Scholar
  44. Tomlinson, B.E., Blessed, G. and Roth, M. (1968). Observations on the brains of non-demented old people. Journal of the Neurological Sciences, 7, 331–356.PubMedCrossRefGoogle Scholar
  45. Verhas, M., Schoutens, A., Devol, O., Patte, M., Rokossky, M., Struyven, J. and Cappen, A. (1976). The use of 99mTc-labelled albumen mucospheres in cerebral vascular disease. Journal of Nuclear Medicine, 17, 170–174.PubMedGoogle Scholar
  46. Wilson, R.S., Fox, J.H., Huckman, M.S., Bacon, L.D. and Lobick, J.J. (1982). Computed tomography in dementia. Neurology, 32, 1054–1057.PubMedCrossRefGoogle Scholar
  47. Winchell, H.S., Horst, W.D. and Braun, L. (1980). N Iso 1231 p iodo amphetamine: single pass brain uptake and washout: binding to brain synaptosones and localisation in dog and monkey brain. Journal of Nuclear Medicine, 21, 947–952.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. A. O. Besson
  • J. R. Crawford
  • D. M. Parker
  • P. V. Best
  • H. G. Gemmell
  • P. F. Sharp
  • F. W. Smith

There are no affiliations available

Personalised recommendations