Chaos in the Case of Two Fixed Black Holes

  • G. Contopoulos
Part of the NATO ASI Series book series (NSSB, volume 332)


We study the orbits of photons (null geodesics) and particles (time-like geodesics) in the field of two fixed black holes. The orbits of photons terminate either at the black holes M 1 and M 2 (types (I) and (II)), or at infinity (type (III)). The limits of these three types of orbits are Cantor sets, defined by the unstable periodic orbits, that form a set of measure zero. In the case of particles with elliptic energy there are some stable periodic orbits that trap around them both quasiperiodic orbits (type (IV)) and chaotic orbits that do not reach the black holes (type (V)). The stable periodic orbits may become unstable, producing an infinity of period doubling bifurcations. The main periodic orbits are two almost circular satellite orbits around each black hole, M 1 and M 2, and almost elliptical orbits surrounding both black holes. Orbits crossing one of the satellite orbits inwards fall into the corresponding black hole. For certain values of the parameters one or both satellite orbits may not exist. Then the separation of the type (I) and/or type (II) orbits is done by some almost hyperbolic orbits. In the Newtonian case the satellite orbits around M 1 and M 2 never exist (except if M 1 = 0, or M 2 = 0 exactly). However we have many families of higher order periodic orbits that exist both in the relativistic and the Newtonian case. The differences between the corresponding orbits are large close to the black holes.


Black Hole Periodic Orbit Null Geodesic Period Doubling Bifurcation Chaotic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon, N., 1982, J. Chem. Phys., 76, 1309.ADSCrossRefGoogle Scholar
  2. Arnold, V. J., 1978, Mathematical Methods of Classical Mechanics, Springer Verlag.Google Scholar
  3. Benettin, G., Cercignani, C., Galgani, L. and Giorgilli, A., 1980, Lett. Nuovo Cim., 28, 1.CrossRefGoogle Scholar
  4. Bleher, S., Grebogi, C. and Ott, E., 1990, Physica, D46, 87.MathSciNetADSGoogle Scholar
  5. Chandrasekhar, S., 1989, Proc. R. Soc. Lond., A421, 227.MathSciNetADSGoogle Scholar
  6. Charlier, C. L., 1902, Die Mechanik des Himmels, von Veit, Leipzig.Google Scholar
  7. Contopoulos, G., 1990a, Proc. R. Soc. Lond., A431, 183.MathSciNetADSGoogle Scholar
  8. Contopoulos, G., 1990b, Astron. Astrophys., 231, 41.MathSciNetADSGoogle Scholar
  9. Contopoulos, G., 1991, Proc. R. Soc. Lond., A435, 551.MathSciNetADSGoogle Scholar
  10. Contopoulos, G. and Kaufmann, D., 1992, Astron. Astrophys., 253, 379.MathSciNetADSzbMATHGoogle Scholar
  11. Contopoulos, G., Kandrup, H.E. and Kaufmann, D., 1993, Physica, D64, 310.ADSGoogle Scholar
  12. Contopoulos, G. and Papadaki, H., 1993, Celest. Mech. Dyn. Astron., 55, 47.MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. Coullet, P. and Tresser, C., 1978, J. Phys. Paris, C5, 25.Google Scholar
  14. Deprit, A., 1960, Mathematiques du XXe Sciècle, Univ. Louvain 1, 45.Google Scholar
  15. Eckhardt, B. and Yung, C., 1986, J. Phys., A19, L829.ADSGoogle Scholar
  16. Feigenbaum, M. J., 1978, J. Stat. Phys., 19, 25.MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. Greene, J. M., 1969, J. Math. Phys., 20, 1183.ADSCrossRefGoogle Scholar
  18. Hedges, R. M. and Reinhart, W. P., 1983, J. Chem. Phys., 78, 3964.ADSCrossRefGoogle Scholar
  19. Hénon, M., 1965, Ann. Astrophys., 28, 992.ADSGoogle Scholar
  20. Hénon, M., 1988, Physica, D33, 132.ADSGoogle Scholar
  21. Hénon, M., 1989, La Recherche, 20, 490.ADSGoogle Scholar
  22. Majumdar, S. D., 1947, Phys. Rev., 72, 390.ADSCrossRefGoogle Scholar
  23. Noid, D. W. and Koszykowski, M. L., 1980, Chem. Phys. Lett., 73, 114.MathSciNetADSCrossRefGoogle Scholar
  24. Noid, D. W., Gray, S.K. and Rice, S. A., 1986, J. Chem. Phys., 84, 2649.ADSCrossRefGoogle Scholar
  25. Papapetrou, A., 1947, Proc. R. Irish Acad., 51, 191.MathSciNetGoogle Scholar
  26. Petit, J. M. and Hénon, M., 1986, Icarus, 66, 536.ADSCrossRefGoogle Scholar
  27. Poincaré, H., 1892, Méthodes Nouvelles de la Mécanique Céleste, Gauthier Villars, Paris.Google Scholar
  28. Woll, R. J. and Hase, W., 1980, J. Chem. Phys., 73, 3779.MathSciNetADSCrossRefGoogle Scholar
  29. Yung, C. and Scholz, H.-J., 1987, J. Phys., A20, 3607.ADSGoogle Scholar
  30. Yung, C. and Scholz, H.-J., 1988, J. Phys., A22, 2925.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. Contopoulos
    • 1
    • 2
  1. 1.Dept. of AstronomyUniversity of FloridaGainesvilleUSA
  2. 2.Dept. of AstronomyUniversity of AthensPanepistimiopolis, AthensGreece

Personalised recommendations