Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 332))

Abstract

This paper gives a short exposition of the use of normal form theory and reduction to study Hamiltonian systems which are perturbations of the harmonic oscillator.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Cushman and D. Rod, 1982, “Reduction of the semisimple 1:1 resonance”, Physica D, 6, 105–112.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Churchill, M. Kummer, and D. Rod, 1983, “On averaging, reduction and symmetry in Hamiltonian systems”, J. Diff. Eqns., 49, 359–414.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Cushman, 1992, “A survey of normalization techniques applied to perturbed Keplerian systems”, Dynamics reported, (new series) 1, 54–112, (New York: Springer).

    Article  MathSciNet  Google Scholar 

  4. J-C.van der Meer, 1985, The Hamiltonian Hopf bifurcation, Lecture Notes in Mathematics, 1185, (New York: Springer).

    Google Scholar 

  5. R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, (to appear).

    Google Scholar 

  6. R. Abraham and J. Marsden, 1978, Foundations of Mechanics, second edition, (Reading, Mass.: Benjamin-Cummings).

    Google Scholar 

  7. J. Arms, R. Cushman, and M. Gotay, 1991, “A universal reduction procedure for Hamiltonian group actions”, in: The Geometry of Hamiltonian Systems, ed. T. Ratiu, 31–51, (Boston: Birkhauser).

    Google Scholar 

  8. M. Henon and C. Heiles, 1964, “The applicablility of the third integral of motion: some numerical experiments”, Astronomial Journal, 69, 73–79.

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Churchill, G. Pecelli, and D. Rod, 1978, “A survey of the Henon-Heiles Hamiltonian with applications to related examples”, in: Como Conference Proceedings on Stochasitc Behavior in Classical and Quantum Hamiltonian Systems, eds. G. Casati and J. Ford, 76–136, Springer Lecture Notes in Physics, 93, (New York: Springer Verlag).

    Google Scholar 

  10. F. Gustavson, 1966, “On constructing formal integrals of a Hamiltonian system near an equilibrium point”, Astronomical Journal, 71, 670–686.

    Article  ADS  Google Scholar 

  11. R. Churchill and D. Rod, 1980, “Pathology in dynamical systems III. Analytic Hamiltonians”, J. Diff. Eqns., 37, 23–38.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cushman, R. (1994). Geometry of Perturbation Theory. In: Hobill, D., Burd, A., Coley, A. (eds) Deterministic Chaos in General Relativity. NATO ASI Series, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9993-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9993-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9995-8

  • Online ISBN: 978-1-4757-9993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics