A Short Course on Chaotic Hamiltonian Systems

  • Richard C. Churchill
Part of the NATO ASI Series book series (NSSB, volume 332)


The lectures begin with a brief introduction to chaotic dynamics; then rapidly sketch how the ideas apply to Hamiltonian mechanics. Familiarity with Hamilton’s equations, as would be encountered in elementary mechanics courses, is assumed. The treatment of geodesic flows in Section 3 is somewhat in the spirit of symplectic mechanics, but classical notation is emphasized. The presentation is rigorous only in Section 1, which is quite elementary. References for further study are provided.


Fractal Dimension Periodic Orbit Hamiltonian System Periodic Point Unstable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anosov, D. V., 1969, Geodesic flows on Riemannian manifolds with negative curvature, Proc. Steklov Math. Inst., vol 90 (Providence, RI, Am. Math. Soc.).Google Scholar
  2. Arnold, L. H. Crauel, J.-P. Eckmann eds., 1991, Liapunov Exponents, Proc. Oberwolfach, 1990, Springer Lecture Notes in Mathematics, vol 1486, (Berlin: Springer-Verlag).Google Scholar
  3. Arnol’d, V. I. and A. Avez, 1968, Ergodic Problems of Classical Mechanics, (New York: W. A. Benjamin).Google Scholar
  4. Banks, J., J. Brooks, G. Cairns, G. Davis and P. Stacey, 1992, On Devaney’s definition of Chaos, Am. Math. Monthly, 99, 332.Google Scholar
  5. Birkhoff, G. D., 1968, Collected Mathematical Publications, Vol. II, (New York: Dover Publications).Google Scholar
  6. Churchill, R. C., G. Pecelli and D. L. Rod, 1979, A survey of the Hénon-Heiles Hamiltonian with applications to related examples, in “Como Conference Proceedings on Stochastic Behavior in Classical and Quantum Hamiltonian Systems,” Springer Lecture Notes in Physics, vol 99, ed G. Casate and J. Ford, (New York: Springer-Verlag).Google Scholar
  7. Churchill, R. C., and D. L. Rod, 1980, Pathology in dynamical systems III: Analytic Hamiltonians, J. Diff. Eqns., 37. 23.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Devaney, R. L., 1989, An introduction to Chaotic Dynamical Systems, 2nd ed., (Redwood City, CA.: Addison-Wesley).zbMATHGoogle Scholar
  9. Devaney, R. L. 1992, A First Course in Chaotic Dynamical Systems, Theory and Experiment, (Reading, MA.: Addison-Wesley).zbMATHGoogle Scholar
  10. Gottschalk, W. H., and G. Hedlund, 1955, Am. Math. Soc. Colloq. Publ. XXXVI, (Providence, RI., Am. Math. Soc).Google Scholar
  11. Hartman, P., 1982, Ordinary Differential Equations, 2nd ed., (Boston: Birkhäuser).Google Scholar
  12. Holmes, P., 1982, Proof of non-integrability for the Hénon-Heiles Hamiltonian near an exceptional integrable case, Physica 5D, 335.ADSGoogle Scholar
  13. Kirchgarber, O., and D. Stoffer, 1989, On the definition of chaos, Z. Angew. Math., Mech., 69, (1989), 175.MathSciNetCrossRefGoogle Scholar
  14. Kirchgarber, O., and D. Stoffer, 1990, Chaotic behavior in simple dynamical systems, SIAM Review, 32, 424.MathSciNetCrossRefGoogle Scholar
  15. Maskit, B., 1971, On Poincaré’s theorem for fundamental polygons, Adv. in Math. 7, 219.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Maskit, B., (1980), Kleinian Groups, (Berlin: Springer-Verlag).Google Scholar
  17. Moser, J., 1973, Stable and random motions in dynamical systems, Ann. of Math. Studies, 77, (Princeton: Princeton University Press).Google Scholar
  18. Nemytskii, V. V., and V. V. Stepanov, 1960, Qualitative Theory of Ordinary Differential Equations, (Princeton: Princeton University Press).Google Scholar
  19. Oseledec, V. I., 1968, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19, 197.MathSciNetGoogle Scholar
  20. Parker, T. S., and L. O. Chua, 1989, Practical Numerical Algorithms for Chaotic Systems, (New York: Springer-Verlag).zbMATHCrossRefGoogle Scholar
  21. Pesin, Ja. B., 1976, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys, 32, 55.MathSciNetADSCrossRefGoogle Scholar
  22. Smale, S., 1965, Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology, ed S. S. Cairns (Princeton: Princeton Univ. Press), 63.Google Scholar
  23. Wiggins, S., 1988, Global Bifurcations and Chaos, Analytical Methods, Applied Mathematical Sciences 73, (New York: Springer-Verlag).Google Scholar
  24. Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics 2, (New York: Springer-Verlag).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Richard C. Churchill
    • 1
  1. 1.Dept. of Mathamatics, Hunter College and Graduate CenterCUNYNew YorkUSA

Personalised recommendations