Advertisement

Integrability of the Mixmaster Universe

  • G. Contopoulos
  • B. Grammaticos
  • A. Ramani
Part of the NATO ASI Series book series (NSSB, volume 332)

Abstract

We show that the Mixmaster Universe, or Bianchi IX, model passes the Painlevé test, i.e. the solutions of the equations of motion have only poles as movable singularities. Thus this system is probably integrable and therefore non-chaotic.

Keywords

Periodic Solution Singular Solution Monodromy Matrice Chaotic Character Lyapunov Characteristic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz, M. J., Ramani, A. and Segur, H., 1980, J. Math. Phys., 21, 715.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Belinski, V. A. and Khalatnikov, I. M., 1969, Sov. Phys. JETP, 29, 911 and 30, 1174.ADSGoogle Scholar
  3. Berger, B. K., 1991a, Class. Quantum Grav., 7, 203.ADSCrossRefGoogle Scholar
  4. Berger, B. K., 1991b, Gen. Rel. Grav., 23, 1385.ADSCrossRefGoogle Scholar
  5. Bountis, A., Segur, H. and Vivaldi, F., 1982, Phys. Rev., A25, 1257.MathSciNetADSGoogle Scholar
  6. Burd, A. B., Buric, N. and Ellis, G. F. R., 1990, Gen. Rel. Grav., 22, 349.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Contopoulos, G., Grammaticos, B. and Ramani, A., 1993, J. Phys. A., (in press).Google Scholar
  8. Ferraz, K. and Francisco, G., 1991, Phys. Rev., D45, 1158.MathSciNetADSGoogle Scholar
  9. Ferraz, K., Francisco, G. and Matsas, G. E. A., 1991, Phys. Lett., A156, 407.ADSGoogle Scholar
  10. Francisco, G. and Matsas, G.E. A., 1988, Gen. Rel. Grav., 20, 1047.MathSciNetADSCrossRefGoogle Scholar
  11. Hobill, D., 1991, in Nonlinear problems in Relativity and Cosmology, S. L. Detweiler and J. R. Ipser, eds., N. Y. Acad. Sci. 631, p. 15.MathSciNetADSGoogle Scholar
  12. Hobill, D., Bernstein, D., Simpkins, D. and Welge, M., 1989, in Proc. 12th Int. Conf. Gen. Rel. Grav., Boulder, Univ. of Colorado, abstracts p.337.Google Scholar
  13. Hobill, D., Bernstein, D., Simpkins, D. and Welge, M., 1992, Class. Quantum Grav., 8, 1155.ADSCrossRefGoogle Scholar
  14. Landau, L. D. and Lifshitz, E. M., 1975, The Classical Theory of Fields, Pergamon Press, Oxford, eqs. 118.5–118.9.Google Scholar
  15. Misner, C. M., 1969, Phys. Rev. Lett., 22, 1071.ADSzbMATHCrossRefGoogle Scholar
  16. Misner, C. M., Thome, K. and Wheeler, J. A., 1977, Gravitation, Freeman, San Francisco.Google Scholar
  17. Pullin, J., 1991, in SILARG VII Relativity and Gravitation, Classical and Quantum, J. C. D’Olivio, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, Jr., L. F. Urrutia and F. Zerrucke, eds., World Scientific, Singapore, p. 189.Google Scholar
  18. Ramani, A., Grammaticos, B. and Bountis, A., 1989, Phys. Rep., 180, 159.MathSciNetADSCrossRefGoogle Scholar
  19. Ryan, M. P., Jr. and Shepley, L. C., 1975, Homogeneous Relativistic Cosmologies, Princeton Univ. Press, Princeton.Google Scholar
  20. van Moerbecke, P., 1988, in Finite Dimensional Integrable Nonlinear Dynamical Systems, P. G. L. Leach and W.H. Steeb, eds., World Scientific, Singapore, p.1.Google Scholar
  21. Yoshida, H., 1988, in Finite Dimensional Integrable Nonlinear Dynamical Systems, P. G. L. Leach and W.H. Steeb, eds., World Scientific, Singapore, p.74.Google Scholar
  22. Yoshida, H., Hietarinta, J., Grammaticos, B. and Ramani, A., 1987, Physica, A144, 310.MathSciNetADSGoogle Scholar
  23. Wintner, A., 1941, The Analytical Foundations of Celestial Mechanics, Princeton Univ. Press, Princeton.Google Scholar
  24. Zardecki, A., 1983, Phys. Rev., D28, 1235.MathSciNetADSGoogle Scholar
  25. Ziglin, S. L., 1983, Funct Anal. Appl., 16, 181 and 17, 6.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. Contopoulos
    • 1
    • 2
  • B. Grammaticos
    • 3
  • A. Ramani
    • 4
  1. 1.Dept. of AstronomyUniversity of FloridaGainesvilleUSA
  2. 2.Dept. of AstronomyUniversity of AthensPanepistimiopolis, AthensGreece
  3. 3.LPNUniversité Paris VIIParisFrance
  4. 4.CPT, Ecole PolytechniqueCNRS UPR 14PalaiseauFrance

Personalised recommendations