Advertisement

The Belinskii-Khalatnikov-Lifshitz Discrete Evolution as an Approximation to Mixmaster Dynamics

  • Beverly K. Berger
Part of the NATO ASI Series book series (NSSB, volume 332)

Abstract

Mixmaster dynamics is defined to be the evolution of vacuum, diagonal Bianchi IX spatially homogeneous cosmologies. Belinskii, Lifshitz, and Khalatnikov (BKL) developed a discrete approximation to Mixmaster dynamics. Here we analyze their approximation to discuss how well it represents the true solution. We show that sufficiently close to the singularity, the BKL approximation describes all the features of an accurately computed Mixmaster trajectory. Within the BKL approximation, the origination of any sensitivity to initial conditions can be explicitly identified. Since a precise analogy can be drawn between the BKL parameters and variables which describe the true Mixmaster dynamics, it can be argued that the trajectories inherit any chaos that characterizes the approximation. Since the discrete evolution which is the closest analog of the true dynamics is only “marginally chaotic,” recent controversies over whether or not the dynamics is chaotic may be more semantic than substantive.

Keywords

Bianchi Type Hamiltonian Constraint Potential Wall Expansion Direction Liapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barrow, J.D., 1982, Phys. Rep., 85, 1.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Barrow, J.D., 1984, Classical General Relativity, (Cambridge: Cambridge University), p 25.Google Scholar
  3. [3]
    Barrow, J.D. and Tipler, F., 1979, Phys. Rep., 56, 372.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Belinskii, V.A. and Khalatnikov, I.M., 1969a, Sov. Phys. JETP, 29, 911.ADSGoogle Scholar
  5. [5]
    Belinskii, V.A. and Khalatnikov, I.M., 1969b, Sov. Phys. JETP, 30, 1174.MathSciNetADSGoogle Scholar
  6. [6]
    Belinskii, V.A. and Khalatnikov, I.M., 1971, Sov. Phys. JETP, 32, 169.ADSGoogle Scholar
  7. [7]
    Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., 1970, Adv. Phys., 19, 525.ADSCrossRefGoogle Scholar
  8. [8]
    Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., 1982, Adv. Phys., 31, 639.ADSCrossRefGoogle Scholar
  9. [9]
    Belinskii, V.A., Lifshitz, E. M., and Khalatnikov, E. M., 1971, Sov. Phys. Usp., 13, 745.ADSCrossRefGoogle Scholar
  10. [10]
    Berger, B.K., 1990, Class. Quantum Grav., 7, 203.ADSCrossRefGoogle Scholar
  11. [11]
    Berger, B.K., 1991, Gen. Rel. Grav., 23, 1385.ADSCrossRefGoogle Scholar
  12. [12]
    Berger, B.K., 1992, Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, (Singapore: World Scientific).Google Scholar
  13. [13]
    Berger, B.K., 1993a, Phys. Rev. D, 47, 3222.ADSCrossRefGoogle Scholar
  14. [14]
    Berger, B.K., 1993b, “How to determine approximate Mixmaster parameters from numerical evolution of Einstein’s equations,” preprint.Google Scholar
  15. [15]
    Bugalho, M.H., Rica da Silva, A. and Sousa Ramos, J., 1986, Gen. Rel. Grav., 18, 1263.MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    Burd, A.B., Buric, N., and Ellis, G.F.R., 1990, Gen. Rel. Grav., 22, 349.MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [17]
    Burd, A.B., Buric, N., and Tavakol, R.K., 1991, Class. Quantum Grav., 8, 123.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [18]
    Burd, A. and Tavakol, R., 1993, Phys. Rev. D, 47, 5336.ADSCrossRefGoogle Scholar
  19. [19]
    Chernoff, D.F., Barrow, J.D., 1983, Phys. Rev. Lett., 50, 134.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Contopoulos, G., Grammaticos, B. and Ramani, A., 1993, “Painlevé analysis for the Mixmaster Universe model,” preprint.Google Scholar
  21. [21]
    Cosakis, S. and Leach, P.G.L., 1993, “Painlevé analysis of the Mixmaster universe,” preprint.Google Scholar
  22. [22]
    Demaret, J. and De Rop, Y., 1993, Phys. Lett, B299, 223.ADSGoogle Scholar
  23. [23]
    Elskens, Y., 1983, Phys. Rev. D, 28, 1033.MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    Ferraz, K. and Francisco, G., 1992, Phys. Rev. D, 45, 1158.MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Ferraz, K., Francisco, G. and Matsas, G.E.A., 1991, Phys. Lett, 156A, 407.ADSGoogle Scholar
  26. [26]
    Francisco, G. and Matsas, G.E.A., 1988, Gen. Rel. Grav., 20, 1047.MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    Grubisic, B. and Moncrief, V., 1993, “The Mixmaster spacetime, Geroch’s transformation and constants of motion,” preprint.Google Scholar
  28. [28]
    Gutzwiller, M.C., 1990, Chaos in Classical and Quantum Mechanics, (New York: Springer-Verlag).zbMATHGoogle Scholar
  29. [29]
    Halpern, P., 1987, Gen. Rel. Grav., 19, 73.ADSzbMATHCrossRefGoogle Scholar
  30. [30]
    Higuchi, A. and Wald, R., 1993, private communication.Google Scholar
  31. [31]
    Hobill, D., Bernstein, D., Welge, M. and Simkins, D., 1991, Class. Quantum Grav., 8, 1155.MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. [32]
    Ishihara, H., 1985, Prog. Theor. Phys., 74, 490.MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [33]
    Jantzen, R.T., 1984, Cosmology of the Early Universe, (Singapore: World Scientific), p 233.Google Scholar
  34. [34]
    Khalatnikov, I.M., Lifshitz, E.M., Khanin, K.M., Shchur, L.N., and Sinai, Ya. G., 1985, J. Stat. Phys., 38, 97.MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Khalatnikov, I.M. and Pokrovski, V.L., 1972, Magic without Magic, (San Francisco: Freeman), p 441.Google Scholar
  36. [36]
    Kodama, H., 1988, Prog. Theor. Phys., 80, 1024.MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    Lichtenberg, A.J. and Lieberman, M.A., 1983, Regular and Stochastic Motion, (New York: Springer-Verlag).zbMATHCrossRefGoogle Scholar
  38. [38]
    Lifshitz, E.M. and Khalatnikov, I.M., 1964, Sov. Phys. Usp., 6, 495.MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    Lin, X. and Wald, R., 1989, Phys. Rev. D, 40, 3280.MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    Lin, X. and Wald, R.M., 1990, Phys. Rev. D, 41, 2444.ADSCrossRefGoogle Scholar
  41. [41]
    Ma, P.K.-H. and Wainwright, J., 1991, Proceedings of the Third Hungarian Relativity Workshop.Google Scholar
  42. [42]
    MacCallum, M., 1979, General Relativity, an Einstein Centenary Survey, (Cambridge: Cambridge University).zbMATHGoogle Scholar
  43. [43]
    Misner, C.W., 1969a, Phys. Rev. Lett., 22, 1071.ADSzbMATHCrossRefGoogle Scholar
  44. [44]
    Misner, C.W., 1969b, Phys. Rev., 186, 1328.ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    Misner, C.W., 1970, Relativity, (New York: Plenum), p 55.CrossRefGoogle Scholar
  46. [46]
    Misner, C.W., 1972, Magic without Magic, (San Francisco: Freeman), p 441.Google Scholar
  47. [47]
    Misner, C.W., Thorne, K.S. and Wheeler, J.A., 1973, Gravitation, (San Francisco: Freeman), 810–813.Google Scholar
  48. [48]
    Moser, A.R., Matzner, R.A., and Ryan, M.P. Jr., 1973, Ann. Phys., NY, 79, 558.ADSCrossRefGoogle Scholar
  49. [49]
    Pullin, J., 1991, SILARG VII Relativity and Gravitation: Classical and Quantum, (Singapore: World Scientific).Google Scholar
  50. [50]
    Rugh, S.E., 1990, Cand. Scient. Thesis, Niels Bohr Inst.Google Scholar
  51. [51]
    Rugh, S.E. and Jones, B.J.T., 1990, Phys. Lett., A147, 353.MathSciNetADSGoogle Scholar
  52. [52]
    Ryan, M.P. Jr. and Shepley, L.C., 1975, Homogeneous Relativistic Cosmologies, (Princeton: Princeton University).Google Scholar
  53. [53]
    Ryan, M.P. Jr., 1971, Ann. Phys., NY, 65, 506.ADSCrossRefGoogle Scholar
  54. [54]
    Ryan, M.P. Jr., 1972, Hamiltonian Cosmology, (New York: Springer-Verlag).Google Scholar
  55. [55]
    Schleich, K., 1993, private communication.Google Scholar
  56. [56]
    Taub, A., 1951, Ann. Math., 53, 472.MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. [57]
    Wainwright, J. and Hsu, L., 1989, Class. Quantum Grav., 6, 1409.MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Beverly K. Berger
    • 1
  1. 1.Physics DepartmentOakland UniversityRochesterUSA

Personalised recommendations