Relativistic Cosmologies

  • M. A. H. MacCallum
Part of the NATO ASI Series book series (NSSB, volume 332)

Abstract

A review of general relativistic cosmologies intended as a starting point for the more detailed discussions of the rest of the workshop is given. After a brief survey of available models, the relativistic kinematics and dynamics of cosmological models is developed. The “standard” (Friedman-Lemaître-Robertson-Walker) models are described, then the Bianchi models, and finally some inhomogeneous cosmologies.

Keywords

Cosmological Model Perfect Fluid Killing Vector Bianchi Type Relativistic Cosmology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P.J., Hellings, R.W., Zimmerman, R.L., Farshoosh, H., Levine, D.I. and Zeldich, S., 1982, Inhomogeneous cosmology: gravitational radiation in Bianchi backgrounds. Astrophys. J., 253, 1.ADSCrossRefGoogle Scholar
  2. Ashtekar, A. and Samuel, J., (1991). Bianchi cosmologies: the role of spatial topology. Class. Quantum Grav., 8, 2191–2215.MathSciNetADSMATHCrossRefGoogle Scholar
  3. Barnes, A., 1973, On shearfree normal flows of a perfect fluid. Gen. Rel. Grav., 4, 105.ADSMATHCrossRefGoogle Scholar
  4. Barrow, J.D. and Sonoda, D.H., 1986, Asymptotic stability of Bianchi type universes. Phys. Reports, 139, 1–49.MathSciNetADSCrossRefGoogle Scholar
  5. Belinskii, V.A., Lifshitz, E.M. and Khalatnikov, I.M., 1970, The oscillatory regime of approach to an initial singularity in relativistic cosmology. Usp. Fiz. Nauk., 102, 463. Translated in Sov. Phys. Uspekhi, 13, 475 (1971). Also see Adv. Phys. 19, 525 (1970).ADSCrossRefGoogle Scholar
  6. Bianchi, L., 1897, Sugli spazii a tre dimensioni ehe ammettono un gruppo continuo di movimenti. Mem. di Mat. Soc. Ital. Sci., 11, 267. Reprinted in Opere, vol. IX, ed. A. Maxia (Rome: Edizioni Cremonese) 1952.MathSciNetGoogle Scholar
  7. Bogoyavlenskii, O.I., 1985, Methods of the qualitative theory of dynamical systems in astrophysics and gas dynamics. (Berlin and Heidelberg: Springer-Verlag) [Russian original published by Nauka, Moscow, 1980.].CrossRefGoogle Scholar
  8. Bugalho, M.H., 1987, Orthogonality transitivity and cosmologies with a non-Abelian two-parameter isometry group. Class. Quantum Grav., 4, 1043.MathSciNetADSMATHCrossRefGoogle Scholar
  9. Carmeli, M., Charach, C. and Malin, S., 1981, Survey of cosmological models with gravitational, scalar and electromagnetic waves. Phys. Repts., 76, 79.MathSciNetADSCrossRefGoogle Scholar
  10. Carmeli, M. and Feinstein, A., 1984, The cosmological peeling-off property of gravity. Phys. Lett. A, 103, 318–320.MathSciNetADSCrossRefGoogle Scholar
  11. Carr, B.J., 1994, Self-similar perturbations of the Friedman universe and large-scale structure. To appear in Class. Quantum Grav. Google Scholar
  12. Chinea, F.J., Fernandez-Jambrina, F. and Senovilla, J.M.M., 1991, A singularity-free space-time. Phys. Rev. D, 45, 481–6.MathSciNetADSCrossRefGoogle Scholar
  13. Coley, A.A. and Tupper, B.O.J., 1983, Zero-curvature Friedman-Robertson-Walker models as exact viscous magnetohydrodynamic cosmologies. Astrophys. J., 271, 1.ADSCrossRefGoogle Scholar
  14. Collins, C.B., 1971, More qualitative cosmology. Commun. math. phys., 23, 137.ADSMATHCrossRefGoogle Scholar
  15. —, 1974, Tilting at cosmological singularities. Commun. Math. Phys., 39, 131.ADSMATHCrossRefGoogle Scholar
  16. Collins, C.B. and Hawking, S.W., 1973, Why is the universe isotropic? Astrophys. J., 180, 37.MathSciNetCrossRefGoogle Scholar
  17. Collins, C.B. and Lang, J.M., 1987, A class of self-similar space-times and a generalization. Class. Quantum Grav., 4, 61–78.MathSciNetADSMATHCrossRefGoogle Scholar
  18. Eardley, D.M., 1974, Self-similar spacetimes: geometry and dynamics. Commun. math. phys., 37, 287.MathSciNetADSCrossRefGoogle Scholar
  19. Ehlers, J., 1961, Beiträge zur relativistischen Mechanik kontinuerlicher Medien (Contributions to the relativistic mechanics of continuous media). Akad. Wiss. Lit. Mainz, Abh. Math.-Nat. Kl. (11). (English translation by P.K.S. Dunsby, University of Capetown, 1993).Google Scholar
  20. Ellis, G.F.R., 1966, Geometry, relativity and cosmology. Adams Prize Essay, University of Cambridge.Google Scholar
  21. —, 1971, Relativistic cosmology. In Sachs, R.K., editor, General relativity and cosmology, volume XLVII of Proceedings of the International School of Physics “Enrico Fermi” (New York and London: Academic Press), pp. 104–182.Google Scholar
  22. Ellis, G.F.R. and MacCallum, M.A.H., 1969, A class of homogeneous cosmological models. Commun. math. phys., 12, 108–141.MathSciNetADSMATHCrossRefGoogle Scholar
  23. Ellis, G.F.R. and Stoeger, W., 1987, The ‘fitting problem’ in cosmology. Class. Quantum Grav., 4, 1697–1729.MathSciNetADSMATHCrossRefGoogle Scholar
  24. Feinstein, A., 1988, Late-time behaviour of primordial gravitational waves in expanding universe. Gen. Rel. Grav., 20, 183–190.MathSciNetADSCrossRefGoogle Scholar
  25. Feinstein, A. and Senovilla, J.M.M., 1989, A new inhomogeneous cosmological perfect fluid solution with p = ρ/3. Class. Quantum Grav., 6, L89–91.MathSciNetADSMATHCrossRefGoogle Scholar
  26. Ferrari, V., 1990, Colliding waves in general relativity. General Relativity and Gravitation, 1989, ed. Ashby, N., Bartlett, D.F. and Wyss, W. (Cambridge, New York and Melbourne: Cambridge University Press), pp. 3–20.CrossRefGoogle Scholar
  27. Griffiths, J.B., 1991, Colliding plane waves in general relativity. Oxford mathematical monographs. (Oxford: Oxford University Press).Google Scholar
  28. Grishchuk, L.P., 1967, Cosmological models and spatial-homogeneity criteria. Astr. Zh., 44, 1097–1103. (In Russian: English translation in Soviet AstronomyA.J., 11, 881-5 (1968)).ADSGoogle Scholar
  29. Hanquin, J.-L. and Demaret, J., 1983, Gowdy S 1 × S 2 and S 3 inhomogeneous cosmological models. J. Phys. A, 16, L5.MathSciNetADSCrossRefGoogle Scholar
  30. Harness, R.S., 1982, Spacetimes homogeneous on a timelike hypersurface. J. Phys. A, 15, 135.MathSciNetADSMATHCrossRefGoogle Scholar
  31. Harvey, A.L., 1979, Automorphisms of the Bianchi model Lie groups. J. Math. Phys., 20, 251.MathSciNetADSCrossRefGoogle Scholar
  32. Hawking, S.W. and Ellis, G.F.R., 1973, The large-scale structure of space-time. (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
  33. Heckmann, O. and Schücking, E., 1962, Relativistic cosmology. Gravitation: an introduction to current research, ed. Witten, L. (New York and London: J. Wiley).Google Scholar
  34. Hewitt, C.G., 1991, An investigation of the dynamical evolution of a class of Bianchi VI−1/9 cosmological models. Gen. Rel. Grav., 23, 691–712.MathSciNetADSMATHCrossRefGoogle Scholar
  35. Hewitt, C.G., Wainwright, J. and Glaum, M., 1991, Qualitative analysis of a class of inhomogeneous self-similar cosmological models II. Class. Quantum Grav., 8, 1505–1518.MathSciNetADSMATHCrossRefGoogle Scholar
  36. Hewitt, C.G., Wainwright, J. and Goode, S.W., 1988, Qualitative analysis of a class of inhomogeneous self-similar cosmological models. Class. Quantum Grav., 5, 1313–1328.MathSciNetADSMATHCrossRefGoogle Scholar
  37. Hojman, S.A., Nunez, D. and M.P. Ryan, jr., 1992, A minisuperspace example of non-Lagrangian quantization. Phys. Rev. D., 45, 3523–7.MathSciNetADSCrossRefGoogle Scholar
  38. Hsu, L. and Wainwright, J., 1986, Self-similar spatially homogeneous cosmologies: orthogonal perfect fluid and vacuum solutions. Class. Quantum Grav., 3, 1105–1124.MathSciNetADSMATHCrossRefGoogle Scholar
  39. Jaklitsch, M.J., 1987, First order field equations for Bianchi types II-VIh. University of Capetown preprint 87-6.Google Scholar
  40. Jantzen, R.T., 1979, The dynamical degrees of freedom in spatially homogeneous cosmology. Commun. math. phys., 64, 211.MathSciNetADSMATHCrossRefGoogle Scholar
  41. —, 1984, Spatially homogeneous dynamics: a unified picture. Cosmology of the early universe, ed. Ruffini, R. and Fang, L.-Z. (Singapore: World Scientific), pp. 233–305. Also in Gamow cosmology, (Proceedings of the International School of Physics ‘Enrico Fermi’, Course LXXXVI), 1987, ed. Ruffini, R. and Melchiorri, F. (Amsterdam: North Holland), pp. 61-147.Google Scholar
  42. —, 1988, Power law time lapse gauges. Phys. Rev. D, 37, 3472.MathSciNetADSCrossRefGoogle Scholar
  43. Jantzen, R.T. and Rosquist, K., 1986, Exact power law metrics in cosmology. Class. Quantum Grav., 3, 281.MathSciNetADSMATHCrossRefGoogle Scholar
  44. Kantowski, R. and Sachs, R.K., 1966, Some spatially homogeneous cosmological models. J. Math. Phys., 7, 443.MathSciNetADSCrossRefGoogle Scholar
  45. King, A.R. and Ellis, G.F.R., 1973, Tilted homogeneous cosmological models. Commun. math. phys., 31, 209.MathSciNetADSMATHCrossRefGoogle Scholar
  46. Kitchingham, D.W., 1984, The use of generating techniques for space-times with two non-null commuting Killing vectors in vacuum and stiff perfect fluid cosmological models. Class. Quantum Grav., 1, 677–694.MathSciNetADSCrossRefGoogle Scholar
  47. Koutras, A., 1992, Mathematical properties of homothetic space-times. Ph.D. thesis, Queen Mary and Westfield College.Google Scholar
  48. Kramer, D., 1984, A new inhomogeneous cosmological model in general relativity. Class. Quantum Grav., 1, 611–618.ADSCrossRefGoogle Scholar
  49. Kramer, D., Stephani, H., MacCallum, M.A.H. and Herlt, E., 1980, Exact solutions of Einstein’s field equations. (Berlin: Deutscher Verlag der Wissenschaften, and Cambridge: Cambridge University Press). (Russian translation: “Tochnie resheniya uravnenii Einshteina”, 418 pp., translated by I.V. Mitskievich, V.D. Zakharov and S.V. Rumyantsev and edited by Yu. S. Vladimirov (Moscow: Energoisdat) 1982).Google Scholar
  50. Krasinski, A., 1990, Early inhomogeneous cosmological models in Einstein’s theory. Modern cosmology in retrospect, ed. Bertotti, B., Bergia, S., Balbinot, R. and Messina, A. (Cambridge: Cambridge University Press).Google Scholar
  51. Kustaanheimo, P. and Qvist, B., 1948, A note on some general solutions of the Einstein field equations in a spherically symmetric world. Comment. Math. Phys. Helsingf., 13, 12.MathSciNetGoogle Scholar
  52. Lukash, V.N., 1976, Physical interpretation of homogeneous cosmological models. Nuovo. Cim. B, 35, 268.ADSCrossRefGoogle Scholar
  53. Luminet, J., 1978, Spatially homothetic cosmological models. Gen. Rel. Grav., 9, 673.MathSciNetADSCrossRefGoogle Scholar
  54. MacCallum, M.A.H., 1972, On ‘diagonal’ Bianchi cosmologies. Phys. Lett. A, 40, 385–6.MathSciNetADSCrossRefGoogle Scholar
  55. —, 1973, Cosmological models from the geometric point of view. Cargese Lectures in Physics, vol. 6, ed. Schatzman, E., (New York: Gordon and Breach), pp. 61–174.Google Scholar
  56. —, 1979a, Anisotropic and inhomogeneous relativistic cosmologies. General relativity: an Einstein centenary survey, ed. Hawking, S.W. and Israel, W., (Cambridge: Cambridge University Press), pp. 533–580. (Russian translation: Obshchaya teoria otnositel’nosti ed. Ya. A. Smorodinskii and V.B. Braginskii, (Moscow: Mir), 1983. Also reprinted in The early universe: reprints, ed. E.W. Kolb and M.S. Turner, (Reading, Mass: Addison-Wesley), pp. 179-236, 1988).Google Scholar
  57. —, 1979b, The mathematics of anisotropic spatially-homogeneous cosmologies. Physics of the expanding universe, ed. Demianski, M. volume 109 of Lecture Notes in Physics, (Berlin and Heidelberg: Springer-Verlag) pp. 1–59.CrossRefGoogle Scholar
  58. —, 1982, Relativistic cosmology for astrophysicists. Origin and evolution of the galaxies, ed. de Sabbata, V. (Singapore: World Scientific), pp. 9–33. Also, in revised form, in Origin and evolution of the galaxies, ed. Jones, B.J.T. and J.E., Nato Advanced Study Institute Series, 97, pp. 9-39, (Dordrecht: D. Reidel and Co.) 1983.Google Scholar
  59. —, 1984, Exact solutions in cosmology. Solutions of Einstein’s equations: techniques and results (Retzbach, Germany, 1983), ed. Hoenselaers, C. and Dietz, W. Lecture Notes in Physics, 205, pp. 334–366, (Berlin and Heidelberg: Springer-Verlag).Google Scholar
  60. —, 1987, Strengths and weaknesses of cosmological big-bang theory. Theory and observational limits in cosmology, ed. W.R. Stoeger, S.J., (Vatican City: Specola Vaticana), pp. 121–142.Google Scholar
  61. —, 1993a, Anisotropic and inhomogeneous cosmologies. The Renaissance of General Relativity and Cosmology (A survey to celebrate the 65th birthday of Dennis Sciama), ed. Ellis, G., Lanza, A. and Miller, J.C. (Cambridge: Cambridge University Press), pp. 213–233.CrossRefGoogle Scholar
  62. —, 1993b, Inhomogeneous and anisotropic cosmologies. The origin of structure in the universe, ed. Gunzig, E. and Nardone, P., NATO ASI Series C, 393, (Dordrecht: Kluwer), pp. 131–159.CrossRefGoogle Scholar
  63. MacCallum, M.A.H., Stewart, J.M. and Schmidt, B.G., 1970, Anisotropic stresses in homogeneous cosmologies. Commun. math. phys., 17, 343–7.MathSciNetADSCrossRefGoogle Scholar
  64. MacCallum, M.A.H. and Taub, A.H., 1972, Variational principles and spatially homogeneous universes, including rotation. Commun. math. phys., 25, 173–189.MathSciNetADSCrossRefGoogle Scholar
  65. McVittie, G.C., 1984, Elliptic functions in spherically symmetric solutions of Einstein’s equations. Ann. Inst. Henri Poincaré, 40, 235–271.MathSciNetMATHGoogle Scholar
  66. Misner, C.W., 1969, The Mixmaster universe. Phys. Rev. Lett., 22, 1071.ADSMATHCrossRefGoogle Scholar
  67. Raychaudhuri, A.K., 1955, Relativistic Cosmology I. Phys. Rev., 98, 1123.MathSciNetADSMATHCrossRefGoogle Scholar
  68. Roque, W.L. and Ellis, G.F.R., 1985, The automorphism group and field equations for Bianchi universes. Galaxies, axisymmetric systems and relativity: essays presented to W.B. Bonnor on his 65th birthday, ed. MacCallum, M.A.H., (Cambridge: Cambridge University Press), pp. 54–73.Google Scholar
  69. Rosquist, K., 1984, Regularized field equations for Bianchi type VI spatially homogeneous cosmology. Class. Quantum Grav., 1, 81–94.MathSciNetADSCrossRefGoogle Scholar
  70. Rosquist, K. and Jantzen, R.T., 1988, Unified regularization of Bianchi cosmology. Phys. Repts., 166, 89.MathSciNetADSCrossRefGoogle Scholar
  71. Rosquist, K., Uggla, C. and Jantzen, R.T., 1990, Extended dynamics and symmetries in perfect fluid Bianchi cosmologies. Class. Quantum Grav., 7, 625–637.MathSciNetADSMATHCrossRefGoogle Scholar
  72. Ruiz, E. and Senovilla, J.M.M., 1992, A general class of inhomogeneous perfect-fluid solutions. Phys. Rev. D., 45, 1995–2005.MathSciNetADSCrossRefGoogle Scholar
  73. Ryan, M.P., 1972, Hamiltonian cosmology, Lecture Notes in Physics, 13, (Berlin and Heidelberg: Springer-Verlag).Google Scholar
  74. Ryan, M.P. and Shepley, L.C., 1975, Homogeneous relativistic cosmologies. (Princeton: Princeton University Press).Google Scholar
  75. Senovilla, J.M.M., 1990, New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity. Phys. Rev. Lett., 64, 2219–2221.MathSciNetADSMATHCrossRefGoogle Scholar
  76. Siklos, S.T.C., 1980, Field equations for spatially homogeneous spacetimes. Phys. Lett. A, 76, 19.MathSciNetADSCrossRefGoogle Scholar
  77. —, 1984, Einstein’s equations and some cosmological solutions. Relativistic astrophysics and cosmology (Proceedings of the XIVth GIFT International Seminar on Theoretical Physics), ed. Fustero, X. and Verdaguer, E., (Singapore: World Scientific), pp. 201–248.Google Scholar
  78. —, 1991, Stability of spatially homogeneous plane wave spacetimes I. Class. Quantum Grav., 8, 1587–1602.MathSciNetADSMATHCrossRefGoogle Scholar
  79. Smoot, G.F., et al., 1992, Structure in the COBE DMR first year maps. Astrophys. J., 396, 1.ADSCrossRefGoogle Scholar
  80. Sneddon, G.E., 1975, Hamiltonian cosmology: a further investigation. J. Phys. A., 9, 229.MathSciNetADSCrossRefGoogle Scholar
  81. Stephani, H., 1967a, Konform flache Gravitationsfelder. Commun. math. phys., 5, 337.MathSciNetADSMATHCrossRefGoogle Scholar
  82. —, 1967b, Über Lösungen der Einsteinschen Feldgleichungen, die sich in einen fünf-dimensionalen flachen Raum einbetten lassen. Commun. math. phys., 4, 137.MathSciNetADSMATHCrossRefGoogle Scholar
  83. —, 1983, A new interior solution of Einstein’s field equations for a spherically symmetric perfect fluid in shearfree motion. J. Phys. A., 16, 3529–3532.MathSciNetADSMATHCrossRefGoogle Scholar
  84. —, 1987, Some perfect fluid solutions of Einstein’s field equations without symmetries. Class. Quantum Grav., 4, 125.MathSciNetADSMATHCrossRefGoogle Scholar
  85. Taub, A.H., 1951, Empty space-times admitting a three-parameter group of motions. Ann. Math., 53, 472.MathSciNetADSMATHCrossRefGoogle Scholar
  86. Van den Bergh, N., 1988, A class of inhomogeneous cosmological models with separable metrics. Class. Quantum Grav., 5, 167–178.ADSMATHCrossRefGoogle Scholar
  87. —, 1992, A qualitative discussion of the Wils inhomogeneous stiff fluid cosmologies. Class. Quantum Grav, 9, 2297–2307.ADSMATHCrossRefGoogle Scholar
  88. Van den Bergh, N. and Skea, J.E.F., 1992, Inhomogeneous perfect fluid cosmologies. Class. Quantum Grav., 9, 527–532.ADSMATHCrossRefGoogle Scholar
  89. Van den Bergh, N., Wils, P. and Castagnino, M., 1991, Inhomogeneous cosmological models of Wainwright class A1. Class. Quantum Grav., 8, 947–954.ADSCrossRefGoogle Scholar
  90. Verdaguer, E., 1985, Solitons and the generation of new cosmological solutions. Observational and theoretical aspects of relativistic astrophysics and cosmology (Proceedings of the 1984 Santander School), ed. Sanz, J.L. and Goicoechera, L.J. (Singapore: World Scientific), pp. 311–350.Google Scholar
  91. —, 1993, Soliton solutions in spacetimes with two spacelike Killing vectors. Phys. Repts., 229, 1–80.MathSciNetADSMATHCrossRefGoogle Scholar
  92. Wainwright, J., 1979, A classification scheme for non-rotating inhomogeneous cosmologies. J. Phys. A, 12, 2015.ADSGoogle Scholar
  93. —, 1981, Exact spatially inhomogeneous cosmologies. J. Phys. A., 14, 1131.MathSciNetADSCrossRefGoogle Scholar
  94. —, 1983, A spatially homogeneous cosmological model with plane-wave singularity. Phys. Lett., A99, 301.MathSciNetADSGoogle Scholar
  95. Wainwright, J. and Goode, S.W., 1980, Some exact inhomogeneous cosmologies with equation of state p = γμ. Phys. Rev. D, 22, 1906.MathSciNetADSCrossRefGoogle Scholar
  96. Wainwright, J. and Hsu, L., 1989, A dynamical systems approach to Bianchi cosmologies: orthogonal models of Class A. Class. Quantum Grav., 6, 1409–1431.MathSciNetADSMATHCrossRefGoogle Scholar
  97. Wu, Z.-C., 1981, Self-similar cosmological models. Gen. Rel. Grav., 13, 625. Also see J. China Univ. Sci. Tech. 11(2), 25 and 11(3), 20.ADSMATHCrossRefGoogle Scholar
  98. Wyman, M., 1946, Equations of state for radially symmetric distributions of matter. Phys. Rev., 70, 396.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. A. H. MacCallum
    • 1
  1. 1.School of Mathematical Sciences, Queen Mary and Westfield CollegeUniversity of LondonLondonUK

Personalised recommendations