Advertisement

Critical Behaviour in Scalar Field Collapse

  • M. W. Choptuik
Part of the NATO ASI Series book series (NSSB, volume 332)

Abstract

I present an account of the discovery of critical behaviour in spherically-symmetric general-relativistic collapse of a scalar field, φ. Using an adaptive mesh-refinement algorithm in conjunction with finite-difference techniques, I have studied the non-linear evolution of parameterized initial configurations φ(r, 0; p), where a critical parameter value, p = p*, generically demarcates the transition from spacetimes which do not contain a final black hole to spacetimes which do. The near critical regime, pp*, is characterized by a variety of non-linear phenomena including exponential sensitivity to initial conditions, scale-periodicity, and universal power-law dependence of black hole mass on parameter-space displacement |pp*|.

Keywords

Black Hole Scalar Field Critical Behaviour Grid Function Black Hole Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Christodoulou, D., 1986, Commun. Math. Phys., 105, 337MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [1]
    Christodoulou, D., 1986, Commun. Math. Phys., 106, 587MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [1]
    Christodoulou, D., 1987, Commun. Math. Phys., 109, 591MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [1]
    Christodoulou, D., 1987, Commun. Math. Phys., 109, 613.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [2]
    Choptuik, M. W., 1986, University of British Columbia PhD Thesis, (unpublished); 1991 Phys. Rev. D, 44, 3124Google Scholar
  6. Choptuik, M. W., Goldwirth, D. S. and Piran, T., 1992, Class. Quantum Grav., 9, 721.MathSciNetADSCrossRefGoogle Scholar
  7. [3]
    Choptuik, M. W., 1989, Frontiers in Numerical Relativity, (C. R. Evans, L. S. Finn and D. W. Hobill, eds. London: Cambridge University Press), p 206.Google Scholar
  8. [4]
    Choptuik, M. W., 1992, Approaches to Numerical Relativity, (R. d’Inverno ed. London: Cambridge University Press), p 202.CrossRefGoogle Scholar
  9. [5]
    Choptuik, M. W., 1993 Phys. Rev. Lett., 70, 9.ADSCrossRefGoogle Scholar
  10. [6]
    Bardeen, J. M. and Piran T., 1983, Phys. Rep., 96, 205.MathSciNetADSCrossRefGoogle Scholar
  11. [7]
    Richardson, L. F., 1910, Phil. Trans. Roy. Soc., 210, 307.ADSGoogle Scholar
  12. [8]
    Berger, M. J. and Oliger J., 1984, J. Comp. Phys., 53, 484.MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [9]
    Brandt, A., 1977, Math. Comput., 31, 333zbMATHCrossRefGoogle Scholar
  14. Brandt, A., 1982, Lecture Notes in Mathematics, Vol 960: Multigrid Methods, (W. Hackbusch and U. Trottenberg, eds. New York: Springer Verlag), 220.Google Scholar
  15. [10]
    Abrahams, A. M. and Evans, C. R., 1993 Phys. Rev. Lett., 70, 2980.ADSCrossRefGoogle Scholar
  16. [11]
    Evans, C. R., 1993 (Talk presented at Pennsylvania State University Numerical Relativity Workshop).Google Scholar
  17. [12]
    Strominger, A. and Thorlacius, L., 1993, ITP preprint, NSF-ITP-93-144.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. W. Choptuik
    • 1
  1. 1.Center for Relativity, Dept. of PhysicsThe University of Texas at AustinAustinUSA

Personalised recommendations