Skip to main content

Density Functional Formalism in Relativistic Nuclear Mean Field Theory

  • Chapter
Density Functional Theory

Part of the book series: NATO ASI Series ((NSSB,volume 337))

  • 1050 Accesses

Abstract

The description of nuclear structure has been traditionally approached by solving a non-relativistic many-body Schrödinger equation which involves nucleons interacting through static potentials. This has been done within the Hartree-Fock (HF) approximation, where the many-body wave function of the system is replaced by a Slater determinant of single-particle wave functions obtained in a self-consistent way from the mean field produced by the nucleons themselves. Important progress has also been made in the microscopic approach to nuclear matter, mainly along the lines of the Brueckner-Bethe-Goldstone many-body theory [1]. A quantitative microscopic description of finite nuclei, however, has so far only been possible on a phenomenological level. Effective density-dependent interactions with only a few free adjustable parameters, like the Skyrme force [2], have been constructed in order to account for the observed nuclear properties. Such density-dependent Hartree-Fock (DDHF) scheme has been able not only to yield excellent ground-state properties of both spherical and deformed nuclei, but also to describe dynamical phenomena, like fission, heavy ion collisions at low and intermediate energy or nuclear excitation spectra [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. L. Sprung, Adv. Nucl. Phys. 5, 225 (1972).

    Article  Google Scholar 

  2. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

    Article  Google Scholar 

  3. T. H. R. Skyrme, Philos. Mag. 1, 1043 (1956).

    Article  ADS  MATH  Google Scholar 

  4. D. Vautherin and D. M. Brink, Phys. Rev. C5, 626 (1972).

    ADS  Google Scholar 

  5. P. Quentin and H. Flocard, Ann. Rev. Nucl. Part. Sci. 28, 523 (1978).

    Article  ADS  Google Scholar 

  6. J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).

    Article  ADS  Google Scholar 

  7. J. D. Walecka, Ann. Phys. (N.Y.). 83, 491 (1974).

    Article  ADS  Google Scholar 

  8. S. A. Chin, Ann. Phys. (N.Y.). 108, 301 (1977).

    Article  ADS  Google Scholar 

  9. B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  10. C. J. Horowitz and B. D. Serot, Nucl. Phys. A368, 503 (1981).

    ADS  Google Scholar 

  11. A. Bouyssy, S. Marcos, and Pham Van Thieu, Nucl. Phys. A422, 541 (1984).

    ADS  Google Scholar 

  12. P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, and J. Friedrich, Z. Phys. A323, 13 (1986).

    ADS  Google Scholar 

  13. Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (N.Y.). 198, 132 (1990).

    Article  ADS  Google Scholar 

  14. P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).

    Article  ADS  Google Scholar 

  15. B. D. Serot, Rep. Prog. Phys. 55, 1855 (1992).

    Article  ADS  Google Scholar 

  16. A. Bouyssy, J.-F. Mathiot, N. Van Giai, and S. Marcos, Phys. Rev. C36, 380 (1987).

    ADS  Google Scholar 

  17. P. Bernardos, V. N. Fomenko, N. Van Giai, et al., Phys. Rev. C (in press).

    Google Scholar 

  18. L. S. Celenza and C.M. Shakin, Relativistic Nuclear Physics: Theories of Structure and Scattering (World Scientific, Singapore, 1986).

    Google Scholar 

  19. H. Müther, R. Machleidt, and R. Brockmann, Phys. Rev. C42, 1981 (1990).

    ADS  Google Scholar 

  20. S. Lundqvist and N. H. March (eds.), Theory of the Inhornogeneous Electron Gas (Plenum, New York, 1983).

    Google Scholar 

  21. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Google Scholar 

  22. R. M. Dreizler and J. da Providencia (eds.), Density Functional Methods in Physics, Vol. 123 NATO ASI Series B (Plenum, New York, 1985).

    Google Scholar 

  23. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990).

    Book  MATH  Google Scholar 

  24. R. W. Hasse, R. Arvieu, and P. Schuck (eds.), Workshop on Semiclassical Methods in Nuclear Physics, J. de Phys. Colloque C6 (1984).

    Google Scholar 

  25. I. Zh. Petkov and M. V. Stoitsov, Nuclear Density Functional Theory (Clarendon Press, Oxford, 1991).

    Google Scholar 

  26. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  27. R. A. Berg and L. Wilets, Phys. Rev. 101, 201 (1956).

    Article  ADS  MATH  Google Scholar 

  28. R. J. Lombard, Ann. Phys. (N.Y.) 77, 380 (1973).

    Article  ADS  Google Scholar 

  29. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).

    Book  Google Scholar 

  30. O. Bohigas, X. Campi, H. Krivine, and J. Treiner, Phys. Lett. B64, 381 (1976).

    ADS  Google Scholar 

  31. M. Brack, C. Guet, and H.-B. Håkansson, Phys. Rep. 123, 275 (1985).

    Article  ADS  Google Scholar 

  32. M. Centelles, M. Pi, X. Vinas, F. Gardas, and M. Barranco, Nucl. Phys. A510, 397 (1990).

    ADS  Google Scholar 

  33. W. D. Myers and W. J. Swiatecki, Ann. Phys. (N.Y.). 55, 395 (1969).

    Article  ADS  Google Scholar 

  34. W. D. Myers and W. J. Swiatecki, Ann. Phys. (N.Y.) 84, 186 (1974).

    Article  ADS  Google Scholar 

  35. B. Grammaticos and A. Voros, Ann. Phys. (N.Y.). 123, 359 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  36. B. Grammaticos and A. Voros, Ann. Phys. (N.Y.) 129, 153 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  37. D. R. Murphy, Phys. Rev. A24, 1682 (1981).

    ADS  Google Scholar 

  38. M. S. Vallarta and N. Rosen, Phys. Rev. 41, 708 (1932).

    Article  ADS  MATH  Google Scholar 

  39. A. H. MacDonald and S. H. Vosko, J. Phys. C12, 2977 (1979).

    ADS  Google Scholar 

  40. M. V. Ramana and A. K. Rajagopal, Adv. Chem. Phys. 54, 231 (1983).

    Article  Google Scholar 

  41. E. Engel and R. M. Dreizler, Phys. Rev. A35, 3607 (1987).

    ADS  Google Scholar 

  42. E. Engel, H. Müller, and R. M. Dreizler, Phys. Rev. A39, 4873 (1989).

    ADS  Google Scholar 

  43. W. F. Pohlner and R. M. Dreizler, Phys. Rev. A44, 7165 (1991).

    ADS  Google Scholar 

  44. J. Boguta and J. Rafelski, Phys. Lett. B71, 22 (1977).

    ADS  Google Scholar 

  45. J. Boguta and A. R. Bodmer, Nucl. Phys. A292, 413 (1977).

    MathSciNet  ADS  Google Scholar 

  46. W. Stocker and M. M. Sharma, Z. Phys. A339, 147 (1991).

    ADS  Google Scholar 

  47. M. Centelles, X. Vinas, M. Barranco, and P. Schuck, Nucl. Phys. A519, 73c (1990).

    ADS  Google Scholar 

  48. M. Centelles, X. Vinas, M. Barranco, and P. Schuck, Ann. Phys. (N.Y.). 221, 165 (1993).

    Article  ADS  Google Scholar 

  49. M. K. Weigel, S. Haddad, and F. Weber, J. Phys. G17, 619 (1991).

    ADS  Google Scholar 

  50. D. Von-Eiff, S. Haddad, and M. K. Weigel, Phys. Rev. C46, 230 (1992).

    ADS  Google Scholar 

  51. C. Speicher, R. M. Dreizler, and E. Engel, Ann. Phys. (N.Y.). 213, 312 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  52. M. Centelles, X. Vinas, M. Barranco, S. Marcos, and R. J. Lombard, Nucl. Phys. A537, 486 (1992).

    ADS  Google Scholar 

  53. D. Von-Eiff and M. K. Weigel, Phys. Rev. C46, 1797 (1992).

    ADS  Google Scholar 

  54. M. Centelles, X. Vinas, M. Barranco, N. Ohtsuka, Amand Faessler, Dao T. Khoa, and H. Müther, Phys. Rev. C47, 1091 (1993).

    ADS  Google Scholar 

  55. C. Speicher, E. Engel, and R. M. Dreizler, Nucl. Phys. A562, 569 (1993).

    ADS  Google Scholar 

  56. M. CenteUes and X. Vinas, Nucl. Phys. A563, 173 (1993).

    ADS  Google Scholar 

  57. D. A. Kirzhnits, Field Theoretical Methods in Many-Body Systems (Pergamon, Oxford, 1967).

    Google Scholar 

  58. B. K. Jennings, R. K. Bhaduri, and M. Brack, Nucl. Phys. A253, 29 (1975).

    ADS  Google Scholar 

  59. N. H. March, Self-consistent Fields in Atoms (Pergamon, Oxford, 1975).

    Google Scholar 

  60. B.-G. Englert and J. Schwinger, Phys. Rev. A32, 26 (1985).

    ADS  Google Scholar 

  61. M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B312, 377 (1993).

    ADS  Google Scholar 

  62. M. M. Sharma, G. A. Lalazissis, and P. Ring, Phys. Lett. B317, 9 (1993).

    ADS  Google Scholar 

  63. M. M. Sharma, G. A. Lalazissis, W. Hillebrandt, and P. Ring, Phys. Rev. Lett. (submitted).

    Google Scholar 

  64. M. Centelles, X. Vinas, and P. Schuck, Nucl. Phys. A (in press).

    Google Scholar 

  65. D. Von-Eiff and M. K. Weigel, Phys. Rev. C46, 1288 (1992).

    ADS  Google Scholar 

  66. H. Müller and R. M. Dreizler, Nucl. Phys. A563, 649 (1993).

    ADS  Google Scholar 

  67. M. Durand, P. Schuck, and X. Vinas, Z. Phys. A346, 87 (1993).

    ADS  Google Scholar 

  68. P. Schuck and X. Vinas, Phys. Lett. B302, 1 (1993).

    ADS  Google Scholar 

  69. E. Ruiz Arriola and L. L. Salcedo, Mod. Phys. Lett. A8, 2061 (1993).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Centelles, M. (1995). Density Functional Formalism in Relativistic Nuclear Mean Field Theory. In: Gross, E.K.U., Dreizler, R.M. (eds) Density Functional Theory. NATO ASI Series, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9975-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9975-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9977-4

  • Online ISBN: 978-1-4757-9975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics