Density Functional Approach to Vortex Matter

  • Damian J. C. Jackson
  • Mukunda P. Das
Part of the NATO ASI Series book series (NSSB, volume 337)


The magnetic phase diagram for a normal type-II superconductor has several important features, most notable of which are the upper and lower critical field lines, see figure 1.


Flux Line Melting Transition Magnetic Phase Diagram Flux Creep Flux Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Tinkham, “Introduction to Superconductivity”, McGraw Hill, New York (1975).Google Scholar
  2. 2.
    U. Essmann and H. Träuble, Magnetic structures in superconductors, Physics Lett. A 24:526(1967).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Abrikosov, On the magnetic properties of superconductors of the second type, Zh. Eksperim i Teor. Fiz. 32:1442 (1957) [Soviet Phys. — JETP 5:1174 (1957)].Google Scholar
  4. 4.
    J. G. Bednorz and K. A. Müller, Possible high T c superconductivity in the Ba-La-Cu-O system, Z. Phys. B — Condensed Matter 64:189(1986).ADSCrossRefGoogle Scholar
  5. 5.
    F. A. Lindemann, Molecular frequencies, Phys. Z. 11:609(1910).zbMATHGoogle Scholar
  6. 6.
    C. J. Lobb, Critical fluctuations in high-T c superconductors, Phys. Rev. D. 36:3930(1987).ADSGoogle Scholar
  7. 7.
    D. Ceperley, Ground state of the fermion one-component plasma: a. monte-carlo study in two and three dimensions, Phys. Rev. B 18:3126(1978).ADSCrossRefGoogle Scholar
  8. 8.
    P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo and C. A. Murray, Observation of hexagonally correlated flux quanta in YBa2Cu307, Phys. Rev. Lett. 59:2592(1987).ADSCrossRefGoogle Scholar
  9. 9.
    P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak and D. J. Bishop, Evidence from mechanical measurements for flux-lattice melting in single-crystal YBa2Cu307 and Bi2.2Sr2Cao.8Cu208, Phys. Rev. Lett. 61:1666(1988).ADSCrossRefGoogle Scholar
  10. 10.
    T. T. M. Palstra, B. Batlog, L. F. Schneemeyer and J. V. Waszczak, Thermally activated dissipation in Bi2.2Sr2Ca,o.8Cu2O8+5, Phys. Rev. Lett. 61:1662(1988).ADSCrossRefGoogle Scholar
  11. 11.
    A. Umezawa, W. Zhang, A. Gurevich, Y. Feng, E. E. Hellstrom and D. C. Larbalestler, Flux pinning, granularity and the irreversibility line of the high-Tc superconductor HgBa2CuO4+x, Nature 364:129(1993).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Yeshurun and A. P. Malozemoff, Giant flux creep and irreversibility in an Y-Ba-Cu-O crystal: an alternative to the superconducting-glass model, Phys. Rev. Lett. 60:2202(1988).ADSCrossRefGoogle Scholar
  13. 13.
    P. W. Anderson and Y. B. Kim, Hard superconductivity: theory of the motion of Abrikosov flux lines, Rev. Mod. Phys. 36:39(1961).ADSCrossRefGoogle Scholar
  14. 14.
    D. R. Nelson, Vortex entanglement in high T c superconductors, Phys. Rev. Lett. 60:1973(1988).MathSciNetADSCrossRefGoogle Scholar
  15. D. R. Nelson, Vortex line fluctuations in superconductors from superconductors, Phys. Rev. Lett. 60:1973 (1988).MathSciNetADSCrossRefGoogle Scholar
  16. D. R. Nelson, Vortex line fluctuations in superconductors from elementary quantun mechanics, in: “Phase Transition and Relaxation in Systems with Competing Energy Scales”, NATO Advanced Study Institute, New York (1993).Google Scholar
  17. 15.
    D. S. Fisher, M. P. A. Fisher and D. A. Huse, Thermal fluctuations, quenched disorder, phase transitions and transport properties in type-II superconductors, Phys. Rev. B 43:130(1991).ADSCrossRefGoogle Scholar
  18. 16.
    A. I. Larkin and Y. N. Ovchinnikov, Pinning in type-II superconductors, J. Low Temp. Phys. 34:409(1979).ADSCrossRefGoogle Scholar
  19. 17.
    M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin and V. M. Vinokur, Theory of collective flux creep, Phys. Rev. Lett. 63:2303(1989).ADSCrossRefGoogle Scholar
  20. 18.
    T. V. Ramakrishnan and M. Yussouff, First-principles order-parameter theory of freezing, Phys. Rev. B 19:2775(1979).ADSCrossRefGoogle Scholar
  21. 19.
    B. B. Laird, J. D. McCoy and A. D. J. Haymet, Density functional theory of freezing: analysis of crystal density, J. Chem. Phys. 87:5445(1987).ADSCrossRefGoogle Scholar
  22. 20.
    J. F. Lutsko and M. Baus, Nonperturbative density-functional theories of classical nonuniform systems, Phys. Rev. A 41:6647(1990).ADSCrossRefGoogle Scholar
  23. 21.
    I. R. McDonald, The structure of simple liquids, in: “Liquids, Freezing and Glass Transition — Part 1”, Ed. J. P. Hansen, D. Levesque and J. Zinn-Justin, North Holland (1991).Google Scholar
  24. 22.
    S. Sengupta, C. Dasgupta, H. R. Krishnamurthy, G. I. Menon and T. V. Ramakrishnan, Freezing of the vortex liquid in high-Tc superconductors: a density functional approach, Phys. Rev. Lett. 67:3444(1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Damian J. C. Jackson
    • 1
  • Mukunda P. Das
    • 1
  1. 1.Department of Theoretical Physics Institute of Advanced Studies Research School of Physical SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations