Skip to main content

Density Functional Methods for Plasmas and Liquid Metals

  • Chapter
Density Functional Theory

Part of the book series: NATO ASI Series ((NSSB,volume 337))

Abstract

Density functional theory (DFT)[1–3] has proved itself to be an effective first principles calculational method for the electronic and structural properties of a large variety of condensed matter systems. Most of these applications are to atomic, molecular, or solid systems where the ions merely provide a static “external potential” acting on the electronic system. DFT provides a means of reducing this many-electron problem to an effective “single-electron” problem couched in terms of a universal exchange correlation functional of the one-electron density. Given that the universe is mostly made up of ionized matter, i.e., plasmas, it is natural to turn to DFT to develop microscopic theories of matter in the plasma state. The main characteristics of the plasma state from our point of view are (i) the existence of electron populations in continuum as well as in bound states (ii) need to consider not just the electronic subsystem, but also the ionic subsystem, and (iii) finite temperature effects. Thus an Al-plasma at a temperature of 105K and at a density of 1/10 of the normal solid density contains continuum electrons, and not just Al3+, but also Al2+, Al1+, Al, and possibly even some Al-molecular species. Such a mixture is analogous to a molten alloy in many ways and could be much more complex because of partial electron-degeneracy effects and the complex nature of the continuum electron states. If the mass density of Al were maintained at the normal value and the temperature raised towards 106K the dominant species evolve from Alz+, z=3 to a Be-like “Aluminum” with a net charge of z=7, while the free electrons become classical. As another example consider a hydrogen plasma at sufficiently high temperatures and pressures; then it could well be a fully ionized system of electrons and protons. If the same hydrogen plasma were examined at a lower temperature of interest to planetary scientists, e.g., say, at T= 2eV, a pressure of 0.5 Mbar, and a mass density of around 0.2–0.5 g/cc, it would be found to contain e, H H+, H+ 2, H2, and H 2, interacting with each other, with most vibrational, rotational and electronic (bound- as well as continuum-) states occupied to form distributions consistent with the given temperature and chemical potentials. In other words, the electronic and ionic distributions are a function of each other and the pressure and temperature of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev B 136, 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. A. 140, 1133 (1965). See S. Luindqvist and N. March, ed., Theory of the Inhomogeneous Electron Gas (Plenum, New York 1983). R. Dreizler and E. Gross, Density Functional Theory, An approach to the Quantum Many-Body problem (Springer-Verlag, Berlin 1990).

    MathSciNet  ADS  Google Scholar 

  3. N.D. Mermin, Phys. Rev. A 132, 1141 (1965).

    MathSciNet  Google Scholar 

  4. M.W.C. Dharma-wardana and Francois Perrot, Phys. Rev. A 26, 2096 (1982).

    Article  ADS  Google Scholar 

  5. M.W.C. Dharma-wardana and Francois Perrot, Phys. Rev. 29, 1378 (1984). also, see the reviews in Strongly Coupled Plasma Physics, F.J. Rogers and H.E. DeWitt, Eds., (Plenum, New York 1987).

    Article  Google Scholar 

  6. M.W.C. Dharma-wardana and R. Taylor, J. Phys. C14, 629 (1981).

    ADS  Google Scholar 

  7. F. Perrot and M.W.C. Dharma-wardana, Phys. Rev. A 30, 2619 (1984), also U. Gupta and A.K. Rajagopal, Phys. Rev A22, 2792.

    Article  ADS  Google Scholar 

  8. F. Perrot, Y. Furutani and M.W.C. Dharma-wardana, Phys. Rev. A 41, 1096 (1990).

    Google Scholar 

  9. F. Grimaldi, A. Grimaldi-Lecourt and M.W.C. Dharma-wardana, Phys. Rev. A 32, 1063 (1985).

    Article  Google Scholar 

  10. F. Perrot and M.W.C. Dharma-wardana, Phys. Rev. A 36, 238 (1987).

    Article  ADS  Google Scholar 

  11. D. Ofer, E. Nardi, and Y. Rosenfeld, Phys. Rev A 38, 5801, (1988).

    Article  ADS  Google Scholar 

  12. F. Perrot and M.W.C. Dharma-wardana Equations of State for Astrophysics Eds. G. Chabrier and E. Schatzman (Cambridge University Press, U. K. 1994).

    Google Scholar 

  13. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

  14. W. Kohn and M. Luttinger Phys. Rev 118, 41 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A.K. Fetter and J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, N.Y. 1971).

    Google Scholar 

  16. S. Vosko, L. Wilks, and M. Nusair, Can. J. Phys. 58, 388 (1980).

    Article  MathSciNet  Google Scholar 

  17. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 41, 566 (1980).

    Article  ADS  Google Scholar 

  18. A.H. MacDonald, M.W.C. Dharma-wardana and D.J.W. Geldart, J. Phys. F Iß, 1719 (1980).

    Google Scholar 

  19. D. G. Kanhere, P.V. Panat, R.K. Rajagopal, and J. Callaway, Phys. Rev A33, 490 (1986).

    ADS  Google Scholar 

  20. R.G. Dundrea, N.W. Ashcroft, and A.E. Carlsson, Phys. Rev B34, 2097 (1986).

    ADS  Google Scholar 

  21. S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, 91 (1987).

    Article  ADS  Google Scholar 

  22. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).

    MATH  Google Scholar 

  23. J.-P. Hansen and I. MacDonald, Theory of Simple Liquids, (Academic, London 1986).

    Google Scholar 

  24. K.-C. Ng, J. Chem. Phys. 61, 2680 (1974).

    Article  ADS  Google Scholar 

  25. F. Lado, Y. Rosenfeld and N. W. Ashcroft, Phys. Rev A20, 1028 (1976).

    Google Scholar 

  26. D.C. Langreth and J.P. Perdew, Phys. Rev. B15, 2884 (1977).

    ADS  Google Scholar 

  27. J. Chihara Phys. Rev. A33, 2575 (1986), also J. Phys. C17, 1633 (1986).

    ADS  Google Scholar 

  28. F. Perrot and M.W.C. Dharma-wardana, Phys. Rev A41, 3281 (1990).

    ADS  Google Scholar 

  29. G.D. Mahan, Many-Particle Physics, Plenum, NY (1990).

    Book  Google Scholar 

  30. F. Perrot, A20, 586 (1979), for T=0K calculations see e.g., E. Zaremba et al J. Phys. F7, 1763 (1977).

    Article  ADS  Google Scholar 

  31. J.P. Perdew and A. Zunger, Phys. Rev B23, 5048 (1981).

    ADS  Google Scholar 

  32. see also J. Dobson, J.Phys. C 4, 7877 (1992).

    Google Scholar 

  33. J. Rosenfeld(private communication), we have confirmed this independently.

    Google Scholar 

  34. M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. A45, 5883 (1992).

    ADS  Google Scholar 

  35. W. Kohn and C. Majumdar, Phys. Rev. A138, 1617 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  36. D. Saumon and G. Chabrier, Phys. Rev A46, 2084 (1992).

    ADS  Google Scholar 

  37. D.D.J. Stevensen and E.E. Salpeter, Astrophys. J. Suppl. Ser. 35, 221 (1977).

    Article  ADS  Google Scholar 

  38. E.B. Wigner and H.B. Huntington, J. Chem. Phys. 3,764 (1935).

    Article  ADS  Google Scholar 

  39. Stauffer, Physics Reports, Scaling theory of percolation clusters. 54, 1 (1979).

    Google Scholar 

  40. e.g. See D.H. Reitze, H. Ahn and M.C. Downer, Phys. Rev. B 45, 2677 (1992).

    Article  Google Scholar 

  41. N.W. Ashcroft, Il Nuovo Cimento 12D, 597 (1990), also Z. Badirkhan et. al. ibid, 619.

    Article  ADS  Google Scholar 

  42. M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. Lett. 65, 76 (1990), Modern Physics Letters B. 5, 161 (1991).

    Article  ADS  Google Scholar 

  43. P.S. Salmon, J. Phys. F. 18, 2345 (1988).

    Article  ADS  Google Scholar 

  44. G. Galli, R. Martin, R. Car and M. Parrinello, Phys. Rev. Lett. 63, 988 (1989).

    Article  ADS  Google Scholar 

  45. I. Stich, R. Car and M. Parrinello, ibid,. 63, 2240 (1989).

    Article  ADS  Google Scholar 

  46. F.A. Stillinger and T.A. Weber, Phys. Rev. B. 31, 5265 (1985).

    Article  ADS  Google Scholar 

  47. F. Perrot, Phys. Rev. A42, 4871 (1990).

    ADS  Google Scholar 

  48. J.M. Ziman, Proc. R. Soc. London. 91, 701 (1976).

    Google Scholar 

  49. F. Nardin, J. Jaccucci, and M.W.C. Dharma-wardana, Phys. Rev A. 37, 1025 (1988).

    Article  ADS  Google Scholar 

  50. A. Zangwill and P. Soven, Phys. Rev. A21 1561, (1980).

    ADS  Google Scholar 

  51. T. Ando, Phys Rev B13, 3468 (1976).

    ADS  Google Scholar 

  52. T. Ando et al, Rev. Mod. Phys. 54, 437, (1982).

    Article  ADS  Google Scholar 

  53. F. Grimaldi, A. Grimaldi-Lecourt, and M.W.C. Dharma-wardana, Phys. Rev. A32, 1063 (1985).

    ADS  Google Scholar 

  54. F. Perrot and M.W.C. Dharma-wardana, Phys. Rev Lett. 71, 797 (1993).

    Article  ADS  Google Scholar 

  55. B.K. Godwal A. Ng L. DaSilva Y.T. Lee and D.A. Liberman Phys. Rev. A 40 4521 1989.

    Article  ADS  Google Scholar 

  56. also T.A. Hall et. al. Phys. Rev. Lett. 60, 2034 (1988).

    Article  ADS  Google Scholar 

  57. G.I. Kerley, Report No. LA-8833-M, Los Alamos (1981).

    Google Scholar 

  58. Y.T. Lee and R.M. More, Phys. Fluids 27, 1973 (1984).

    Google Scholar 

  59. G.A. Rinker, Phys. Rev. B 31, 4207 (1985).

    Article  ADS  Google Scholar 

  60. For a review of the Keldysh method see J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

    Article  ADS  Google Scholar 

  61. Other methods: see D.N. Zubarev, Non-Equilibrium Statistical Thermodynamics, PJ. Shepherd Trs., (Consultants bureau, New York 1974).

    Google Scholar 

  62. The calculation for the equilibrium case has been given by G.D. Mahan, J. Phys. Chem. Solids. 31, 1477 (1970).

    Article  ADS  Google Scholar 

  63. P. Cellier and Andrew Ng (Private communication).

    Google Scholar 

  64. H.M. Milchberg et al, Phys. Rev. Lett. 61, 2364 (1988).

    Article  ADS  Google Scholar 

  65. M.W.C. Dharma-wardana and F. Perrot, Physics Letters A. 163, 223 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dharma-wardana, C., Perrot, F. (1995). Density Functional Methods for Plasmas and Liquid Metals. In: Gross, E.K.U., Dreizler, R.M. (eds) Density Functional Theory. NATO ASI Series, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9975-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9975-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9977-4

  • Online ISBN: 978-1-4757-9975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics