Mixed-Basis Scheme for DFT Calculations

  • Helmut Eschrig
Part of the NATO ASI Series book series (NSSB, volume 337)


A combined basis consisting of core orbitals, in a special way localized valence orbitals, and orthogonalized (to core orbitals only) plane waves is introduced for variational solutions of Kohn-Sham equations. The localized orbitals represent atomic valence orbitals in the range of their radial nodes with high precision, but are smoothly compressed in their radial extension to almost not overlap from different sites. They are precisely orthogonal to all core states. The scheme combines high precision with high numerical efficiency: It converges very rapidly with respect to the number of plane waves (cut-off energy well below 10 Hartree for a mHartree accuracy) and allows for a rather simple analytical treatment of all needed matrix elements.


Point Energy Core State Slater Type Orbital Bloch State Core Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. K. Andersen, Phys. Rev. B. 12, 3060 (1975).ADSCrossRefGoogle Scholar
  2. [2]
    H. L. Skriver, The LMTO Method, Springer-Verlag, Berlin 1984.CrossRefGoogle Scholar
  3. [3]
    A. R. Williams, J. Kubier, and C. D. Gelatt, Jr., Phys. Rev. B. 19, 1990 (1979).CrossRefGoogle Scholar
  4. [4]
    D. J. Singh, I.I Krakauer, C. Haas, and A. Y. Liu, Phys. Rev. B. 46, 13065 (1992).ADSCrossRefGoogle Scholar
  5. [5]
    G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B. 26, 4199 (1982).ADSCrossRefGoogle Scholar
  6. [6]
    L. Kleinman and D. M. Bylander, Phys. Rev. Letters. 48, 1425 (1982).ADSCrossRefGoogle Scholar
  7. [7]
    D. Vanderbilt, Phys. Rev. B. 41, 7892 (1990).ADSCrossRefGoogle Scholar
  8. [8]
    H. Eschrig, Optimized LCAO Method and the Electronic Structure of Extented Systems, Springer-Verlag, Berlin 1989.CrossRefGoogle Scholar
  9. [9]
    G. te Velde and E. J. Baerends, Phys. Rev. B 44, 7888 (1991).ADSCrossRefGoogle Scholar
  10. [10]
    W. Hierse and P. M. Oppeneer, J. Chem. Phys. 99, 1278 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Helmut Eschrig
    • 1
  1. 1.MPG-AG ElektronensystemeTU DresdenDresdenGermany

Personalised recommendations