Skip to main content

Mixed-Basis Scheme for DFT Calculations

  • Chapter
Density Functional Theory

Part of the book series: NATO ASI Series ((NSSB,volume 337))

  • 1047 Accesses

Abstract

A combined basis consisting of core orbitals, in a special way localized valence orbitals, and orthogonalized (to core orbitals only) plane waves is introduced for variational solutions of Kohn-Sham equations. The localized orbitals represent atomic valence orbitals in the range of their radial nodes with high precision, but are smoothly compressed in their radial extension to almost not overlap from different sites. They are precisely orthogonal to all core states. The scheme combines high precision with high numerical efficiency: It converges very rapidly with respect to the number of plane waves (cut-off energy well below 10 Hartree for a mHartree accuracy) and allows for a rather simple analytical treatment of all needed matrix elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. K. Andersen, Phys. Rev. B. 12, 3060 (1975).

    Article  ADS  Google Scholar 

  2. H. L. Skriver, The LMTO Method, Springer-Verlag, Berlin 1984.

    Book  Google Scholar 

  3. A. R. Williams, J. Kubier, and C. D. Gelatt, Jr., Phys. Rev. B. 19, 1990 (1979).

    Article  Google Scholar 

  4. D. J. Singh, I.I Krakauer, C. Haas, and A. Y. Liu, Phys. Rev. B. 46, 13065 (1992).

    Article  ADS  Google Scholar 

  5. G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B. 26, 4199 (1982).

    Article  ADS  Google Scholar 

  6. L. Kleinman and D. M. Bylander, Phys. Rev. Letters. 48, 1425 (1982).

    Article  ADS  Google Scholar 

  7. D. Vanderbilt, Phys. Rev. B. 41, 7892 (1990).

    Article  ADS  Google Scholar 

  8. H. Eschrig, Optimized LCAO Method and the Electronic Structure of Extented Systems, Springer-Verlag, Berlin 1989.

    Book  Google Scholar 

  9. G. te Velde and E. J. Baerends, Phys. Rev. B 44, 7888 (1991).

    Article  ADS  Google Scholar 

  10. W. Hierse and P. M. Oppeneer, J. Chem. Phys. 99, 1278 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eschrig, H. (1995). Mixed-Basis Scheme for DFT Calculations. In: Gross, E.K.U., Dreizler, R.M. (eds) Density Functional Theory. NATO ASI Series, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9975-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9975-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9977-4

  • Online ISBN: 978-1-4757-9975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics