Skip to main content

Local Density Functional and Strong On-Site Correlations: The Electronic Structure of La2CuO4

  • Chapter
Density Functional Theory

Part of the book series: NATO ASI Series ((NSSB,volume 337))

  • 1039 Accesses

Abstract

The density functional (DF) theory has been a most successful theoretical method for describing ground state properties in solid state physics since the beginning of seventies [1, 2]. An enormous amount of applications of the local density approximation (LDA) to the DF can be found in the literature for the description of a wide range of phenomena in a wide range of materials (see e.g. references within Refs. [1, 2] and reviews [3, 4]). Unfortunately the class of materials where the LDA does not work properly is also growing rapidly including those with the most startling physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theory of the Inhomogeneous Electron Gas edited by S. Lundqvist and N.H. March, (Plenum, 1983).

    Google Scholar 

  2. G.D. Mahan and K.R. Subbaswamy, Local Density Theory of Polarizability, (Plenum, 1990).

    Google Scholar 

  3. R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  4. W.E. Pickett, Rev. Mod. Phys. 62, 433 (1989).

    Article  ADS  Google Scholar 

  5. D.C. Langreth and J.P. Perdew, Phys. Rev. B21, 5469 (1980).

    ADS  Google Scholar 

  6. D.C. Langreth and M. J. Mehl, Phys. Rev. B28, 1809 (1983).

    ADS  Google Scholar 

  7. J.P. Perdew and Y. Wang, Phys. Rev. B33, 8800 (1986).

    ADS  Google Scholar 

  8. J.P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981).

    ADS  Google Scholar 

  9. J.P. Perdew in Advances in Quantum. Chemistry, Vol. 21, edited by S.B. Trickey, p. 113 (Academic Press, 1990), and the references therein.

    Google Scholar 

  10. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B44, 943 (1991).

    ADS  Google Scholar 

  11. J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Jr, Phys. Rev. Lett. 49, 1691 (1982).

    Article  ADS  Google Scholar 

  12. A.R. Williams, J. Kübier, and C.D. Gelatt, Jr, Phys. Rev. B19, 6094 (1979).

    ADS  Google Scholar 

  13. M.T. Czyżyk, R.A. de Groot, G. Dalba, P. Fornasini, A. Kisiel, F. Rocca, and E. Burattini, Phys. Rev. B39, 9831 (1989).

    ADS  Google Scholar 

  14. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, and M.T. Czyżyk, Phys. Rev. B38, 11322 (1988).

    ADS  Google Scholar 

  15. M. Grioni, M.T. Czyżyk, F.M.F. de Groot, J.C. Fuggle, and B.E. Watts, Phys. Rev. B39, 4886 (1989).

    ADS  Google Scholar 

  16. M.T. Czyżyk, and R.A. de Groot, in Proceedings of the Second European Conference on Progress in X-ray Synchrotron Radiation Research Research, Rome, Italy 1989, edited by A. Balerna, E. Bernieri, and S. Mobilio, (Italian Physical Society, Bolonia 1990), p.47.

    Google Scholar 

  17. P.J.W. Weijs, M.T. Czyżyk, J.F. van Acker, W. Speier, J.B. Goedkoop, H. van Leuken, H.J.M. Hendrix, R.A. de Groot, G. van der Laan, K.H.J. Buschow, G. Wiech and J.C. Fuggle, Phys. Rev. B41, 11899 (1990).

    ADS  Google Scholar 

  18. H. van Leuken, A. Lodder, M.T. Czyżyk, F. Springelkamp, and R.A. de Groot, Phys. Rev. B41, 5613 (1990).

    ADS  Google Scholar 

  19. M.T. Czyżyk, K. Lawniczak-Jabloriska, and S. Mobilio, Phys. Rev. B45, 1581 (1992);.

    ADS  Google Scholar 

  20. M.T. Czyżyk, R. Potze, and G.A. Sawatzky, Phys. Rev. B46, 3729 (1992).

    ADS  Google Scholar 

  21. O.K. Andersen, Phys. Rev. B12, 3060 (1975).

    ADS  Google Scholar 

  22. H.K. Skriver, The LMTO Method, (Berlin, 1984).

    Google Scholar 

  23. O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  24. E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, (Cambridge, 1953).

    Google Scholar 

  25. J.S. Griffith, The Theory of Transition-Metal Ions, (Cambridge, 1961).

    Google Scholar 

  26. A.M. Oles and G. Stollhoff, Phys. Rev. B29, 314 (1984).

    ADS  Google Scholar 

  27. J.B. Grant and A.K. McMahan, Phys. Rev. B46, 8440 (1992).

    ADS  Google Scholar 

  28. M.M. Steiner, R.C. Albers, and L.J. Sham, Phys. Rev. B45, 13272 (1992).

    ADS  Google Scholar 

  29. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, and G.A. Sawatzky, to appear in Phys. Rev. B. (Dec.‘93).

    Google Scholar 

  30. A.K. McMahan, R.M. Martin, and S. Satpathy, Phys. Rev. B38, 6650 (1988).

    ADS  Google Scholar 

  31. O. Gunnarsson, O.K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B39, 1708 (1989).

    ADS  Google Scholar 

  32. M.S. Hybertsen, and M. Schlüter, Phys. Rev. B39, 9028 (1989).

    ADS  Google Scholar 

  33. A.K. McMahan, J.F. Annett, and R.M. Martin, Phys. Rev. B42, 6268 (1990).

    ADS  Google Scholar 

  34. One should be a bit careful when comparing the values of U reported in the literature, because of the different, often only implicitly assumed conventions which are used. All values obtained by constrained-LDA calculations involving atomic-sphere (muffin-tin) approximation should be identified with screened Slater monopole integral F 0 eff. So we do, see Appendix. The diagonal values of Coulomb interaction U mm , m = x 2y 2, 3z 2r 2,xy, etc, are, however, different. In terms of Racah A, B and C parameters they read: U d = F 0 eff. , A + 7/5C, and U mm = A + 4B + 3C. As an example, U d = 7.42 eV in Ref. [26] and U(d x 2 y 2) = 8.96 eV in Ref. [20] are in fact the same. Of course, values of B and C have to be known. The authors of references used in this example did not confuse that matter, but it seems that ambiguity about these values exists in the literature.

    Google Scholar 

  35. V.I. Anisimov, M.A. Korotin, J. Zaanen, and O.K. Andersen, Phys. Rev. Lett. 68, 345 (1992).

    Article  ADS  Google Scholar 

  36. V.l. Anisimov, private communication.

    Google Scholar 

  37. C.E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.), No. 467 (Washington, D.C. 1958), Vols. 1-3.

    Google Scholar 

  38. H. Eskes, L.H. Tjeng, and G.A. Sawatzky, Phys. Rev. B41, 288 (1990).

    ADS  Google Scholar 

  39. H. Eskes, and G.A. Sawatzky, Phys. Rev. B44, 9656 (1991).

    ADS  Google Scholar 

  40. F.M.F. de Groot, J.C. Fuggle, B.T. Thole, and G.A. Sawatzky, Phys. Rev. B42, 5459 (1990).

    ADS  Google Scholar 

  41. J.B. Mann, Atomic structure calculations, Los Alamos Scientific Laboratory Reports No.LASL-3690 (1967).

    Google Scholar 

  42. S.L. Cooper, G.A. Thomas, A.J. Millis, P.E. Sulewski, J. Orenstein, D.H. Rapkine, S-W, Cheong, and P.L. Trevor, Phys. Rev. B42, 10785 (1990).

    ADS  Google Scholar 

  43. J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  44. F. Barriquand, and G.A. Sawatzky, submitted to Phys. Rev. B.

    Google Scholar 

  45. E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

    Article  ADS  Google Scholar 

  46. Y. Gao, T.J. Wagener, J.H. Weaver, A.J. Arko, B. Flandermeyer, D.W. Capone II, Phys. Rev. B36, 3971 (1987).

    ADS  Google Scholar 

  47. F.C. Zhang, and T.M. Rice, Phys. Rev. B37, 3759 (1988).

    ADS  Google Scholar 

  48. E. Pellegrin, N. Nücker, J. Fink, S.L. Molodtsov, A. Gutierrez, E. Navas, O. Strebel, Z. Hu, M. Domke, G. Kaindl, S. Uchida, Y. Nakamura, J. Markl, M. Klauda, G. Saemann-Ischenko, A. Krol, J.L. Peng, Z.Y. Li, and R.L. Greene, Phys. Rev. B47, 3354 (1993). The experimental spectra presented in Fig. 6 differ slightly from those published by Pellegrin et al. We used spectra which were corrected for the self-absorption effect and which were kindly provided to us by E. Pellegrin after publication.

    Google Scholar 

  49. C.T. Chen, L.H. Tjeng, J. Kwo, H.L. Kao, P. Rudolf, F. Sette, and R.M. Fleming, Phys. Rev. Lett. 68, 2543 (1992).

    Article  ADS  Google Scholar 

  50. We used such a broadening procedure successfully in many occasions. See e.g. Ref. [11, 13] and [14].

    Google Scholar 

  51. Such an expectation is based on our previous experience with self-consistent calculations of the core-hole effects on the XAS spectra in semiconductors and metals. See: M.T. Czyżyk, and R.A. de Groot, Proc. of ”2nd European Conf. on Progress in X-ray Synchrotron Radiation Research, p. 47, Rome, Italy, October 1989; P.J.W. Weijs, M.T. Czyèyk, J.F. van Acker, W. Speier, J.B. Goedkoop, H. van Leuken, H.J.M. Hendrix, R.A. de Groot, G. van der Laan, H.J. Buschow, G. Wiech, J.C. Fuggle, Phys. Rev. B41, 11899 (1990).

    ADS  Google Scholar 

  52. Z-X. Shen, J.W. Allen, J.J. Yeh, J.-S. Kang, W. Ellis, W. Spicer, I. Lindau, M.B. Maple, Y.D. Dalichaouch, M.S. Torikachvili, J.Z. Sun, and T.H. Geballe Phys. Rev. B36, 8414 (1987).

    ADS  Google Scholar 

  53. A. Fujimori, E. Takayama-Muromachi, Y. Uchida, and B. Okai, Phys. Rev. B35, 8814 (1987).

    ADS  Google Scholar 

  54. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, and M.T. Czyżyk, Phys. Rev. B38, 11322 (1988).

    ADS  Google Scholar 

  55. H. Eskes and G.A. Sawatzky, Phys. Rev. Lett. 61, 1415 (1988).

    Article  ADS  Google Scholar 

  56. J.A. Gaunt, Phil.Trans. A. 228, 151 (1929).

    Article  ADS  MATH  Google Scholar 

  57. D.A. Varshslovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum, (World Scientific, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Czyżyk, M.T., Sawatzky, G.A. (1995). Local Density Functional and Strong On-Site Correlations: The Electronic Structure of La2CuO4 . In: Gross, E.K.U., Dreizler, R.M. (eds) Density Functional Theory. NATO ASI Series, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9975-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9975-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9977-4

  • Online ISBN: 978-1-4757-9975-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics